Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's simplify the given expression step-by-step:
[tex]\[ \frac{3x^2 - 3x}{3x^2 - 3} \][/tex]
1. Factor out the common factors in the numerator and the denominator.
In the numerator \(3x^2 - 3x\), we can factor out a \(3x\):
[tex]\[ 3x^2 - 3x = 3x(x - 1) \][/tex]
In the denominator \(3x^2 - 3\), we can factor out a \(3\):
[tex]\[ 3x^2 - 3 = 3(x^2 - 1) \][/tex]
2. Notice that \(x^2 - 1\) is a difference of squares:
[tex]\[ x^2 - 1 = (x + 1)(x - 1) \][/tex]
So the denominator can also be factored further:
[tex]\[ 3(x^2 - 1) = 3(x + 1)(x - 1) \][/tex]
3. Substitute back the factored forms into the original expression:
[tex]\[ \frac{3x(x - 1)}{3(x + 1)(x - 1)} \][/tex]
4. Cancel out the common factors in the numerator and denominator.
The common factor \(3\) and \((x - 1)\) can be canceled:
[tex]\[ \frac{3x \cancel{(x - 1)}}{3(x + 1)\cancel{(x - 1)}} = \frac{x}{x + 1} \][/tex]
So, the simplified form of the expression \(\frac{3x^2 - 3x}{3x^2 - 3}\) is:
[tex]\[ \frac{x}{x + 1} \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{B. } \frac{x}{x+1} \][/tex]
[tex]\[ \frac{3x^2 - 3x}{3x^2 - 3} \][/tex]
1. Factor out the common factors in the numerator and the denominator.
In the numerator \(3x^2 - 3x\), we can factor out a \(3x\):
[tex]\[ 3x^2 - 3x = 3x(x - 1) \][/tex]
In the denominator \(3x^2 - 3\), we can factor out a \(3\):
[tex]\[ 3x^2 - 3 = 3(x^2 - 1) \][/tex]
2. Notice that \(x^2 - 1\) is a difference of squares:
[tex]\[ x^2 - 1 = (x + 1)(x - 1) \][/tex]
So the denominator can also be factored further:
[tex]\[ 3(x^2 - 1) = 3(x + 1)(x - 1) \][/tex]
3. Substitute back the factored forms into the original expression:
[tex]\[ \frac{3x(x - 1)}{3(x + 1)(x - 1)} \][/tex]
4. Cancel out the common factors in the numerator and denominator.
The common factor \(3\) and \((x - 1)\) can be canceled:
[tex]\[ \frac{3x \cancel{(x - 1)}}{3(x + 1)\cancel{(x - 1)}} = \frac{x}{x + 1} \][/tex]
So, the simplified form of the expression \(\frac{3x^2 - 3x}{3x^2 - 3}\) is:
[tex]\[ \frac{x}{x + 1} \][/tex]
Therefore, the correct answer is:
[tex]\[ \text{B. } \frac{x}{x+1} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.