Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To simplify the expression \(\frac{2x^2 - 2}{-x + 1}\), follow these steps:
1. Factor the Numerator: Start by factoring the numerator \(2x^2 - 2\). Notice that both terms in the numerator share a common factor of 2:
[tex]\[ 2x^2 - 2 = 2(x^2 - 1) \][/tex]
2. Recognize a Difference of Squares: Recognize that \(x^2 - 1\) is a difference of squares, which can be factored further:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
Substituting this back into the expression, we have:
[tex]\[ 2(x^2 - 1) = 2(x - 1)(x + 1) \][/tex]
3. Rewrite the Expression: Substitute the factored form into the original expression:
[tex]\[ \frac{2(x - 1)(x + 1)}{-x + 1} \][/tex]
4. Simplify by Canceling Common Factors: Observe that \((x - 1)\) and \((-x + 1)\) are related. Note that \((-x + 1)\) can be rewritten as \(-(x - 1)\). So, the expression becomes:
[tex]\[ \frac{2(x - 1)(x + 1)}{-(x - 1)} = -2(x + 1) \][/tex]
Here, the \((x - 1)\) terms cancel out, leaving:
[tex]\[ -2(x + 1) \][/tex]
5. Expand and Simplify: Finally, distribute the -2 across the \(x + 1\):
[tex]\[ -2(x + 1) = -2x - 2 \][/tex]
Thus, the simplified form of \(\frac{2x^2 - 2}{-x + 1}\) is:
[tex]\[ \boxed{-2x - 2} \][/tex]
So, the correct answer is:
C. [tex]\(-2x - 2\)[/tex]
1. Factor the Numerator: Start by factoring the numerator \(2x^2 - 2\). Notice that both terms in the numerator share a common factor of 2:
[tex]\[ 2x^2 - 2 = 2(x^2 - 1) \][/tex]
2. Recognize a Difference of Squares: Recognize that \(x^2 - 1\) is a difference of squares, which can be factored further:
[tex]\[ x^2 - 1 = (x - 1)(x + 1) \][/tex]
Substituting this back into the expression, we have:
[tex]\[ 2(x^2 - 1) = 2(x - 1)(x + 1) \][/tex]
3. Rewrite the Expression: Substitute the factored form into the original expression:
[tex]\[ \frac{2(x - 1)(x + 1)}{-x + 1} \][/tex]
4. Simplify by Canceling Common Factors: Observe that \((x - 1)\) and \((-x + 1)\) are related. Note that \((-x + 1)\) can be rewritten as \(-(x - 1)\). So, the expression becomes:
[tex]\[ \frac{2(x - 1)(x + 1)}{-(x - 1)} = -2(x + 1) \][/tex]
Here, the \((x - 1)\) terms cancel out, leaving:
[tex]\[ -2(x + 1) \][/tex]
5. Expand and Simplify: Finally, distribute the -2 across the \(x + 1\):
[tex]\[ -2(x + 1) = -2x - 2 \][/tex]
Thus, the simplified form of \(\frac{2x^2 - 2}{-x + 1}\) is:
[tex]\[ \boxed{-2x - 2} \][/tex]
So, the correct answer is:
C. [tex]\(-2x - 2\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.