Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, let's analyze the information given and the properties of the trigonometric functions involved.
Given:
[tex]\[ \tan(\theta) = -1 \][/tex]
And we need to find:
[tex]\[ \sec(\theta) \][/tex]
for:
[tex]\[ \frac{3\pi}{2} < \theta < 2\pi \][/tex]
1. Determine the quadrant:
The interval \(\frac{3\pi}{2} < \theta < 2\pi\) places \(\theta\) in the fourth quadrant. In the fourth quadrant, the tangent of an angle is negative, which is consistent with \(\tan(\theta) = -1\).
2. Analyze the trigonometric relationships:
We know that:
[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \][/tex]
Given that \(\tan(\theta) = -1\), this implies:
[tex]\[ \frac{\sin(\theta)}{\cos(\theta)} = -1 \implies \sin(\theta) = -\cos(\theta) \][/tex]
3. Determine \(\sin(\theta)\) and \(\cos(\theta)\):
Using the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Let \(\cos(\theta) = x\). Then:
[tex]\[ \sin(\theta) = -x \][/tex]
Substitute these into the Pythagorean identity:
[tex]\[ (-x)^2 + x^2 = 1 \implies x^2 + x^2 = 1 \implies 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \pm\frac{1}{\sqrt{2}} \][/tex]
4. Determine the sign of \(\cos(\theta)\):
In the fourth quadrant, \(\cos(\theta)\) is positive. Therefore, we take the positive value:
[tex]\[ \cos(\theta) = \frac{1}{\sqrt{2}} \][/tex]
5. Compute \(\sec(\theta)\):
Recall that \(\sec(\theta)\) is the reciprocal of \(\cos(\theta)\):
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \][/tex]
Thus, the value of \(\sec(\theta)\) is:
[tex]\[ \sqrt{2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{2}} \][/tex]
Given:
[tex]\[ \tan(\theta) = -1 \][/tex]
And we need to find:
[tex]\[ \sec(\theta) \][/tex]
for:
[tex]\[ \frac{3\pi}{2} < \theta < 2\pi \][/tex]
1. Determine the quadrant:
The interval \(\frac{3\pi}{2} < \theta < 2\pi\) places \(\theta\) in the fourth quadrant. In the fourth quadrant, the tangent of an angle is negative, which is consistent with \(\tan(\theta) = -1\).
2. Analyze the trigonometric relationships:
We know that:
[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \][/tex]
Given that \(\tan(\theta) = -1\), this implies:
[tex]\[ \frac{\sin(\theta)}{\cos(\theta)} = -1 \implies \sin(\theta) = -\cos(\theta) \][/tex]
3. Determine \(\sin(\theta)\) and \(\cos(\theta)\):
Using the Pythagorean identity:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Let \(\cos(\theta) = x\). Then:
[tex]\[ \sin(\theta) = -x \][/tex]
Substitute these into the Pythagorean identity:
[tex]\[ (-x)^2 + x^2 = 1 \implies x^2 + x^2 = 1 \implies 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \pm\frac{1}{\sqrt{2}} \][/tex]
4. Determine the sign of \(\cos(\theta)\):
In the fourth quadrant, \(\cos(\theta)\) is positive. Therefore, we take the positive value:
[tex]\[ \cos(\theta) = \frac{1}{\sqrt{2}} \][/tex]
5. Compute \(\sec(\theta)\):
Recall that \(\sec(\theta)\) is the reciprocal of \(\cos(\theta)\):
[tex]\[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \][/tex]
Thus, the value of \(\sec(\theta)\) is:
[tex]\[ \sqrt{2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{\sqrt{2}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.