Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the inverse of the function \( y = 9x^2 - 4 \), we need to follow these steps:
1. Express \( y \) as a function of \( x \):
[tex]\[ y = 9x^2 - 4 \][/tex]
2. Replace \( y \) with \( x \) and \( x \) with \( y \) to find the inverse function:
[tex]\[ x = 9y^2 - 4 \][/tex]
3. Solve this equation for \( y \).
Start with:
[tex]\[ x = 9y^2 - 4 \][/tex]
Isolate the term with \( y^2 \):
[tex]\[ x + 4 = 9y^2 \][/tex]
Divide both sides by 9:
[tex]\[ \frac{x + 4}{9} = y^2 \][/tex]
Take the square root of both sides:
[tex]\[ y = \pm \sqrt{\frac{x + 4}{9}} \][/tex]
Since \(\sqrt{\frac{x + 4}{9}} = \frac{\sqrt{x + 4}}{\sqrt{9}}\):
[tex]\[ y = \pm \frac{\sqrt{x + 4}}{3} \][/tex]
Therefore, the inverse of the function \( y = 9x^2 - 4 \) is:
[tex]\[ y = \pm \frac{\sqrt{x + 4}}{3} \][/tex]
Hence, the correct equation is:
[tex]\[ y = \frac{\pm \sqrt{x+4}}{3} \][/tex]
The correct choice is the third one:
[tex]\[ y = \frac{\pm \sqrt{x + 4}}{3} \][/tex]
1. Express \( y \) as a function of \( x \):
[tex]\[ y = 9x^2 - 4 \][/tex]
2. Replace \( y \) with \( x \) and \( x \) with \( y \) to find the inverse function:
[tex]\[ x = 9y^2 - 4 \][/tex]
3. Solve this equation for \( y \).
Start with:
[tex]\[ x = 9y^2 - 4 \][/tex]
Isolate the term with \( y^2 \):
[tex]\[ x + 4 = 9y^2 \][/tex]
Divide both sides by 9:
[tex]\[ \frac{x + 4}{9} = y^2 \][/tex]
Take the square root of both sides:
[tex]\[ y = \pm \sqrt{\frac{x + 4}{9}} \][/tex]
Since \(\sqrt{\frac{x + 4}{9}} = \frac{\sqrt{x + 4}}{\sqrt{9}}\):
[tex]\[ y = \pm \frac{\sqrt{x + 4}}{3} \][/tex]
Therefore, the inverse of the function \( y = 9x^2 - 4 \) is:
[tex]\[ y = \pm \frac{\sqrt{x + 4}}{3} \][/tex]
Hence, the correct equation is:
[tex]\[ y = \frac{\pm \sqrt{x+4}}{3} \][/tex]
The correct choice is the third one:
[tex]\[ y = \frac{\pm \sqrt{x + 4}}{3} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.