Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the inverse of the function \( y = 9x^2 - 4 \), we need to follow these steps:
1. Express \( y \) as a function of \( x \):
[tex]\[ y = 9x^2 - 4 \][/tex]
2. Replace \( y \) with \( x \) and \( x \) with \( y \) to find the inverse function:
[tex]\[ x = 9y^2 - 4 \][/tex]
3. Solve this equation for \( y \).
Start with:
[tex]\[ x = 9y^2 - 4 \][/tex]
Isolate the term with \( y^2 \):
[tex]\[ x + 4 = 9y^2 \][/tex]
Divide both sides by 9:
[tex]\[ \frac{x + 4}{9} = y^2 \][/tex]
Take the square root of both sides:
[tex]\[ y = \pm \sqrt{\frac{x + 4}{9}} \][/tex]
Since \(\sqrt{\frac{x + 4}{9}} = \frac{\sqrt{x + 4}}{\sqrt{9}}\):
[tex]\[ y = \pm \frac{\sqrt{x + 4}}{3} \][/tex]
Therefore, the inverse of the function \( y = 9x^2 - 4 \) is:
[tex]\[ y = \pm \frac{\sqrt{x + 4}}{3} \][/tex]
Hence, the correct equation is:
[tex]\[ y = \frac{\pm \sqrt{x+4}}{3} \][/tex]
The correct choice is the third one:
[tex]\[ y = \frac{\pm \sqrt{x + 4}}{3} \][/tex]
1. Express \( y \) as a function of \( x \):
[tex]\[ y = 9x^2 - 4 \][/tex]
2. Replace \( y \) with \( x \) and \( x \) with \( y \) to find the inverse function:
[tex]\[ x = 9y^2 - 4 \][/tex]
3. Solve this equation for \( y \).
Start with:
[tex]\[ x = 9y^2 - 4 \][/tex]
Isolate the term with \( y^2 \):
[tex]\[ x + 4 = 9y^2 \][/tex]
Divide both sides by 9:
[tex]\[ \frac{x + 4}{9} = y^2 \][/tex]
Take the square root of both sides:
[tex]\[ y = \pm \sqrt{\frac{x + 4}{9}} \][/tex]
Since \(\sqrt{\frac{x + 4}{9}} = \frac{\sqrt{x + 4}}{\sqrt{9}}\):
[tex]\[ y = \pm \frac{\sqrt{x + 4}}{3} \][/tex]
Therefore, the inverse of the function \( y = 9x^2 - 4 \) is:
[tex]\[ y = \pm \frac{\sqrt{x + 4}}{3} \][/tex]
Hence, the correct equation is:
[tex]\[ y = \frac{\pm \sqrt{x+4}}{3} \][/tex]
The correct choice is the third one:
[tex]\[ y = \frac{\pm \sqrt{x + 4}}{3} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.