Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What is the equation of the translated function, g(x), if
f(x) = x2?

g(x) = (x + 5)2 + 2
g(x) = (x + 2)2 + 5
g(x) = (x – 2)2 + 5
g(x) = (x – 5)2 + 2
On a coordinate plane, two parabolas open up. The solid-line parabola, labeled f of x, goes through (negative 2, 4), has a vertex at (0, 0), and goes through (2, 4). The dashed-line parabola, labeled g of x, goes through (3, 6), has a vertex at (5, 2), and goes through (7, 6).

Sagot :

Answer:

  (d)  g(x) = (x – 5)² + 2

Step-by-step explanation:

You want the equation of the parabola f(x) = x² after its vertex has been translated to (5, 2).

Translation

Translation of function f(x) by (h, k) makes the function be ...

  g(x) = f(x -h) +k

When the vertex of f(x) = x² has been translated by (5, 2), it becomes ...

  g(x) = f(x -5) +2

  g(x) = (x -5)² +2 . . . . . matches choice D

__

Additional comment

Translation by (h, k) moves the graph h units to the right and k units up. We only need to know how one point is translated in order to know what the translated function is. It is convenient to use the vertex as that reference point.