Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Use the formula for [tex]{ }_n P_r[/tex] to evaluate the expression.

[tex]{ }_8 P_8[/tex]

[tex]{ }_8 P _8 = \square[/tex] (Simplify your answer.)


Sagot :

To evaluate the expression \({ }_8 P_8\), we need to use the formula for permutations, which is given by:

[tex]\[ { }_n P_r = \frac{n!}{(n-r)!} \][/tex]

Here, \( n = 8 \) and \( r = 8 \). Plugging these values into the formula, we get:

[tex]\[ { }_8 P_8 = \frac{8!}{(8-8)!} \][/tex]

Simplifying the expression in the denominator:

[tex]\[ { }_8 P_8 = \frac{8!}{0!} \][/tex]

We know that \(0!\) (zero factorial) is equal to 1. Therefore, the expression simplifies to:

[tex]\[ { }_8 P_8 = \frac{8!}{1} \][/tex]

[tex]\[ { }_8 P_8 = 8! \][/tex]

Now, we need to determine the value of \(8!\).

[tex]\[ 8! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 40320 \][/tex]

Therefore,

[tex]\[ { }_8 P_8 = 40320 \][/tex]

So, the simplified answer is:

[tex]\[ 40320 \][/tex]