Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Select the correct answer from each drop-down menu.

The function [tex]f[/tex] is given by the table of values as shown below.

\begin{tabular}{|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 1 & 2 & 3 & 4 & 5 \\
\hline
[tex]$f(x)$[/tex] & 13 & 19 & 37 & 91 & 253 \\
\hline
\end{tabular}

Use the given table to complete the statements.

1. The parent function of the function represented in the table is [tex]$\square$[/tex].
2. If function [tex]f[/tex] was translated down 4 units, a point in the table for the transformed function would be [tex]$\square$[/tex].

Sagot :

Let's analyze the given function and the transformation step-by-step.

We are given the function \( f \) represented in a table of values:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 13 & 19 & 37 & 91 & 253 \\ \hline \end{array} \][/tex]

First, we need to determine the effect of translating the function \( f \) down by 4 units. Translating a function \( f \) vertically down by 4 units means subtracting 4 from each \( f(x) \) value.

Let's find the translated values:

- \( f(1) = 13 \) will become \( 13 - 4 = 9 \)
- \( f(2) = 19 \) will become \( 19 - 4 = 15 \)
- \( f(3) = 37 \) will become \( 37 - 4 = 33 \)
- \( f(4) = 91 \) will become \( 91 - 4 = 87 \)
- \( f(5) = 253 \) will become \( 253 - 4 = 249 \)

Therefore, the points for the transformed function would be:

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) - 4 & 9 & 15 & 33 & 87 & 249 \\ \hline \end{array} \][/tex]

Now, we need to select an example point from the transformed function's table and insert it into the appropriate position.

Given the transformed values, we can select any point. Let's use \( x = 2 \) as an example.

For \( x = 2 \), the value in the transformed function \( f(x) - 4 \) is \( 15 \). Hence, the point is \( (2, 15) \).

Therefore, the correct completion of the statements would be:

1. The parent function of the function represented in the table is \( f(x) \).
2. If function \( f \) was translated down 4 units, the \( y \)-values would be decreased by 4 units each.
3. A point in the table for the transformed function would be [tex]\( (2, 15) \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.