Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine how much \( \text{Mg(OH)}_2 \) is produced when 3 moles of \( \text{MgCl}_2 \) are added to 4 moles of \( \text{KOH} \), we need to consider the stoichiometry of the reaction and identify the limiting reagent.
The balanced chemical equation for the reaction is:
[tex]\[ \text{MgCl}_2 + 2 \text{KOH} \rightarrow \text{Mg(OH)}_2 + 2 \text{KCl} \][/tex]
### Step-by-Step Solution:
1. Identify the moles of reactants:
- Moles of \( \text{MgCl}_2 \): 3
- Moles of \( \text{KOH} \): 4
2. Determine the stoichiometric ratio required for the reaction:
- According to the balanced equation, 1 mole of \( \text{MgCl}_2 \) reacts with 2 moles of \( \text{KOH} \).
- Therefore, to react completely with 3 moles of \( \text{MgCl}_2 \), the required moles of \( \text{KOH} \) would be:
[tex]\[ \text{Required moles of } \text{KOH} = 3 \text{ moles of } \text{MgCl}_2 \times 2 \frac{\text{moles of KOH}}{\text{mole of MgCl}_2} = 6 \text{ moles of KOH} \][/tex]
3. Compare the available moles of \( \text{KOH} \) with the required moles:
- Available moles of \( \text{KOH} \): 4
- Required moles of \( \text{KOH} \) for 3 moles of \( \text{MgCl}_2 \): 6
4. Identify the limiting reagent:
- Since the available moles of \( \text{KOH} \) (4 moles) are less than the required moles (6 moles), \( \text{KOH} \) is the limiting reagent.
5. Determine the amount of \( \text{Mg(OH)}_2 \) produced:
- According to the stoichiometry of the reaction, 2 moles of \( \text{KOH} \) produce 1 mole of \( \text{Mg(OH)}_2 \).
- Since \( \text{KOH} \) is the limiting reagent, the amount of \( \text{Mg(OH)}_2 \) produced is determined by the available moles of \( \text{KOH} \):
[tex]\[ \text{Moles of } \text{Mg(OH)}_2 \text{ produced} = \frac{\text{4 moles of KOH}}{2} = 2 \text{ moles of } \text{Mg(OH)}_2 \][/tex]
### Conclusion:
The amount of \( \text{Mg(OH)}_2 \) produced is determined by the amount of \( \text{KOH} \), which is the limiting reagent in this reaction. Therefore, the correct answer is:
C. The amount of [tex]\( \text{KOH} \)[/tex]
The balanced chemical equation for the reaction is:
[tex]\[ \text{MgCl}_2 + 2 \text{KOH} \rightarrow \text{Mg(OH)}_2 + 2 \text{KCl} \][/tex]
### Step-by-Step Solution:
1. Identify the moles of reactants:
- Moles of \( \text{MgCl}_2 \): 3
- Moles of \( \text{KOH} \): 4
2. Determine the stoichiometric ratio required for the reaction:
- According to the balanced equation, 1 mole of \( \text{MgCl}_2 \) reacts with 2 moles of \( \text{KOH} \).
- Therefore, to react completely with 3 moles of \( \text{MgCl}_2 \), the required moles of \( \text{KOH} \) would be:
[tex]\[ \text{Required moles of } \text{KOH} = 3 \text{ moles of } \text{MgCl}_2 \times 2 \frac{\text{moles of KOH}}{\text{mole of MgCl}_2} = 6 \text{ moles of KOH} \][/tex]
3. Compare the available moles of \( \text{KOH} \) with the required moles:
- Available moles of \( \text{KOH} \): 4
- Required moles of \( \text{KOH} \) for 3 moles of \( \text{MgCl}_2 \): 6
4. Identify the limiting reagent:
- Since the available moles of \( \text{KOH} \) (4 moles) are less than the required moles (6 moles), \( \text{KOH} \) is the limiting reagent.
5. Determine the amount of \( \text{Mg(OH)}_2 \) produced:
- According to the stoichiometry of the reaction, 2 moles of \( \text{KOH} \) produce 1 mole of \( \text{Mg(OH)}_2 \).
- Since \( \text{KOH} \) is the limiting reagent, the amount of \( \text{Mg(OH)}_2 \) produced is determined by the available moles of \( \text{KOH} \):
[tex]\[ \text{Moles of } \text{Mg(OH)}_2 \text{ produced} = \frac{\text{4 moles of KOH}}{2} = 2 \text{ moles of } \text{Mg(OH)}_2 \][/tex]
### Conclusion:
The amount of \( \text{Mg(OH)}_2 \) produced is determined by the amount of \( \text{KOH} \), which is the limiting reagent in this reaction. Therefore, the correct answer is:
C. The amount of [tex]\( \text{KOH} \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.