Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the problem step-by-step:
1. Given: Initial Temperature
Let's assume the initial temperature is \( T_0 = 100 \) units.
2. First Change: Increase by 25%
To find the temperature after increasing by 25%, we'll calculate:
[tex]\[ T_1 = T_0 + (0.25 \times T_0) \][/tex]
Alternatively, we can use:
[tex]\[ T_1 = T_0 \times (1 + 0.25) \][/tex]
Substituting the initial temperature \( T_0 = 100 \):
[tex]\[ T_1 = 100 \times 1.25 = 125 \][/tex]
So, the temperature after the first change is 125 units.
3. Second Change: Decrease by 40%
Next, we need to decrease this new temperature by 40%. To calculate this:
[tex]\[ T_2 = T_1 - (0.4 \times T_1) \][/tex]
Alternatively, we can use:
[tex]\[ T_2 = T_1 \times (1 - 0.40) \][/tex]
Substituting the intermediate temperature \( T_1 = 125 \):
[tex]\[ T_2 = 125 \times 0.60 = 75 \][/tex]
So, the temperature after the second change is 75 units.
4. Total Change in Temperature
The total change in temperature from the initial value \( T_0 \) to the final value \( T_2 \) is:
[tex]\[ \Delta T = T_2 - T_0 \][/tex]
Substituting \( T_0 = 100 \) and \( T_2 = 75 \):
[tex]\[ \Delta T = 75 - 100 = -25 \][/tex]
So, the temperature initially increased to 125 units, then decreased to 75 units, resulting in an overall temperature change of [tex]\(-25\)[/tex] units.
1. Given: Initial Temperature
Let's assume the initial temperature is \( T_0 = 100 \) units.
2. First Change: Increase by 25%
To find the temperature after increasing by 25%, we'll calculate:
[tex]\[ T_1 = T_0 + (0.25 \times T_0) \][/tex]
Alternatively, we can use:
[tex]\[ T_1 = T_0 \times (1 + 0.25) \][/tex]
Substituting the initial temperature \( T_0 = 100 \):
[tex]\[ T_1 = 100 \times 1.25 = 125 \][/tex]
So, the temperature after the first change is 125 units.
3. Second Change: Decrease by 40%
Next, we need to decrease this new temperature by 40%. To calculate this:
[tex]\[ T_2 = T_1 - (0.4 \times T_1) \][/tex]
Alternatively, we can use:
[tex]\[ T_2 = T_1 \times (1 - 0.40) \][/tex]
Substituting the intermediate temperature \( T_1 = 125 \):
[tex]\[ T_2 = 125 \times 0.60 = 75 \][/tex]
So, the temperature after the second change is 75 units.
4. Total Change in Temperature
The total change in temperature from the initial value \( T_0 \) to the final value \( T_2 \) is:
[tex]\[ \Delta T = T_2 - T_0 \][/tex]
Substituting \( T_0 = 100 \) and \( T_2 = 75 \):
[tex]\[ \Delta T = 75 - 100 = -25 \][/tex]
So, the temperature initially increased to 125 units, then decreased to 75 units, resulting in an overall temperature change of [tex]\(-25\)[/tex] units.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.