Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the problem step-by-step:
1. Given: Initial Temperature
Let's assume the initial temperature is \( T_0 = 100 \) units.
2. First Change: Increase by 25%
To find the temperature after increasing by 25%, we'll calculate:
[tex]\[ T_1 = T_0 + (0.25 \times T_0) \][/tex]
Alternatively, we can use:
[tex]\[ T_1 = T_0 \times (1 + 0.25) \][/tex]
Substituting the initial temperature \( T_0 = 100 \):
[tex]\[ T_1 = 100 \times 1.25 = 125 \][/tex]
So, the temperature after the first change is 125 units.
3. Second Change: Decrease by 40%
Next, we need to decrease this new temperature by 40%. To calculate this:
[tex]\[ T_2 = T_1 - (0.4 \times T_1) \][/tex]
Alternatively, we can use:
[tex]\[ T_2 = T_1 \times (1 - 0.40) \][/tex]
Substituting the intermediate temperature \( T_1 = 125 \):
[tex]\[ T_2 = 125 \times 0.60 = 75 \][/tex]
So, the temperature after the second change is 75 units.
4. Total Change in Temperature
The total change in temperature from the initial value \( T_0 \) to the final value \( T_2 \) is:
[tex]\[ \Delta T = T_2 - T_0 \][/tex]
Substituting \( T_0 = 100 \) and \( T_2 = 75 \):
[tex]\[ \Delta T = 75 - 100 = -25 \][/tex]
So, the temperature initially increased to 125 units, then decreased to 75 units, resulting in an overall temperature change of [tex]\(-25\)[/tex] units.
1. Given: Initial Temperature
Let's assume the initial temperature is \( T_0 = 100 \) units.
2. First Change: Increase by 25%
To find the temperature after increasing by 25%, we'll calculate:
[tex]\[ T_1 = T_0 + (0.25 \times T_0) \][/tex]
Alternatively, we can use:
[tex]\[ T_1 = T_0 \times (1 + 0.25) \][/tex]
Substituting the initial temperature \( T_0 = 100 \):
[tex]\[ T_1 = 100 \times 1.25 = 125 \][/tex]
So, the temperature after the first change is 125 units.
3. Second Change: Decrease by 40%
Next, we need to decrease this new temperature by 40%. To calculate this:
[tex]\[ T_2 = T_1 - (0.4 \times T_1) \][/tex]
Alternatively, we can use:
[tex]\[ T_2 = T_1 \times (1 - 0.40) \][/tex]
Substituting the intermediate temperature \( T_1 = 125 \):
[tex]\[ T_2 = 125 \times 0.60 = 75 \][/tex]
So, the temperature after the second change is 75 units.
4. Total Change in Temperature
The total change in temperature from the initial value \( T_0 \) to the final value \( T_2 \) is:
[tex]\[ \Delta T = T_2 - T_0 \][/tex]
Substituting \( T_0 = 100 \) and \( T_2 = 75 \):
[tex]\[ \Delta T = 75 - 100 = -25 \][/tex]
So, the temperature initially increased to 125 units, then decreased to 75 units, resulting in an overall temperature change of [tex]\(-25\)[/tex] units.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.