Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the time at which the object will reach the ground, \(t\), we need to find the value of \(t\) when the height \(h(t)\) is zero. This scenario describes when the object hits the ground.
Given the height equation:
[tex]\[h(t) = -16t^2 + 45t + 75\][/tex]
We need to find \(t\) when \(h(t) = 0\):
[tex]\[0 = -16t^2 + 45t + 75\][/tex]
This is a quadratic equation in the standard form [tex]\[ax^2 + bx + c = 0\][/tex], where \(a = -16\), \(b = 45\), and \(c = 75\).
The quadratic formula to solve for \(t\) is given by:
[tex]\[t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\][/tex]
Let's start by calculating the discriminant, which is the part under the square root:
[tex]\[ \text{discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{discriminant} = 45^2 - 4(-16)(75) \][/tex]
[tex]\[ \text{discriminant} = 2025 + 4800 \][/tex]
[tex]\[ \text{discriminant} = 6825 \][/tex]
Now we take the square root of the discriminant:
[tex]\[ \sqrt{6825} \approx 82.6221 \][/tex]
Next, we can find the two potential solutions for \(t\):
[tex]\[ t_1 = \frac{-b + \sqrt{\text{discriminant}}}{2a} \][/tex]
[tex]\[ t_1 = \frac{-45 + 82.6221}{-32} \][/tex]
[tex]\[ t_1 = \frac{37.6221}{-32} \][/tex]
[tex]\[ t_1 \approx -1.176 \][/tex]
[tex]\[ t_2 = \frac{-b - \sqrt{\text{discriminant}}}{2a} \][/tex]
[tex]\[ t_2 = \frac{-45 - 82.6221}{-32} \][/tex]
[tex]\[ t_2 = \frac{-127.6221}{-32} \][/tex]
[tex]\[ t_2 \approx 3.988 \][/tex]
Therefore, the solutions to the equation \( -16t^2 + 45t + 75 = 0 \) are approximately \( t_1 \approx -1.176 \, \text{seconds} \) and \( t_2 \approx 3.988 \, \text{seconds} \).
Since time cannot be negative, we discard \( t_1 \approx -1.176 \).
Thus, the time at which the object will hit the ground is approximately [tex]\( t \approx 3.988 \, \text{seconds} \)[/tex].
Given the height equation:
[tex]\[h(t) = -16t^2 + 45t + 75\][/tex]
We need to find \(t\) when \(h(t) = 0\):
[tex]\[0 = -16t^2 + 45t + 75\][/tex]
This is a quadratic equation in the standard form [tex]\[ax^2 + bx + c = 0\][/tex], where \(a = -16\), \(b = 45\), and \(c = 75\).
The quadratic formula to solve for \(t\) is given by:
[tex]\[t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\][/tex]
Let's start by calculating the discriminant, which is the part under the square root:
[tex]\[ \text{discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{discriminant} = 45^2 - 4(-16)(75) \][/tex]
[tex]\[ \text{discriminant} = 2025 + 4800 \][/tex]
[tex]\[ \text{discriminant} = 6825 \][/tex]
Now we take the square root of the discriminant:
[tex]\[ \sqrt{6825} \approx 82.6221 \][/tex]
Next, we can find the two potential solutions for \(t\):
[tex]\[ t_1 = \frac{-b + \sqrt{\text{discriminant}}}{2a} \][/tex]
[tex]\[ t_1 = \frac{-45 + 82.6221}{-32} \][/tex]
[tex]\[ t_1 = \frac{37.6221}{-32} \][/tex]
[tex]\[ t_1 \approx -1.176 \][/tex]
[tex]\[ t_2 = \frac{-b - \sqrt{\text{discriminant}}}{2a} \][/tex]
[tex]\[ t_2 = \frac{-45 - 82.6221}{-32} \][/tex]
[tex]\[ t_2 = \frac{-127.6221}{-32} \][/tex]
[tex]\[ t_2 \approx 3.988 \][/tex]
Therefore, the solutions to the equation \( -16t^2 + 45t + 75 = 0 \) are approximately \( t_1 \approx -1.176 \, \text{seconds} \) and \( t_2 \approx 3.988 \, \text{seconds} \).
Since time cannot be negative, we discard \( t_1 \approx -1.176 \).
Thus, the time at which the object will hit the ground is approximately [tex]\( t \approx 3.988 \, \text{seconds} \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.