Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the time at which the object will reach the ground, \(t\), we need to find the value of \(t\) when the height \(h(t)\) is zero. This scenario describes when the object hits the ground.
Given the height equation:
[tex]\[h(t) = -16t^2 + 45t + 75\][/tex]
We need to find \(t\) when \(h(t) = 0\):
[tex]\[0 = -16t^2 + 45t + 75\][/tex]
This is a quadratic equation in the standard form [tex]\[ax^2 + bx + c = 0\][/tex], where \(a = -16\), \(b = 45\), and \(c = 75\).
The quadratic formula to solve for \(t\) is given by:
[tex]\[t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\][/tex]
Let's start by calculating the discriminant, which is the part under the square root:
[tex]\[ \text{discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{discriminant} = 45^2 - 4(-16)(75) \][/tex]
[tex]\[ \text{discriminant} = 2025 + 4800 \][/tex]
[tex]\[ \text{discriminant} = 6825 \][/tex]
Now we take the square root of the discriminant:
[tex]\[ \sqrt{6825} \approx 82.6221 \][/tex]
Next, we can find the two potential solutions for \(t\):
[tex]\[ t_1 = \frac{-b + \sqrt{\text{discriminant}}}{2a} \][/tex]
[tex]\[ t_1 = \frac{-45 + 82.6221}{-32} \][/tex]
[tex]\[ t_1 = \frac{37.6221}{-32} \][/tex]
[tex]\[ t_1 \approx -1.176 \][/tex]
[tex]\[ t_2 = \frac{-b - \sqrt{\text{discriminant}}}{2a} \][/tex]
[tex]\[ t_2 = \frac{-45 - 82.6221}{-32} \][/tex]
[tex]\[ t_2 = \frac{-127.6221}{-32} \][/tex]
[tex]\[ t_2 \approx 3.988 \][/tex]
Therefore, the solutions to the equation \( -16t^2 + 45t + 75 = 0 \) are approximately \( t_1 \approx -1.176 \, \text{seconds} \) and \( t_2 \approx 3.988 \, \text{seconds} \).
Since time cannot be negative, we discard \( t_1 \approx -1.176 \).
Thus, the time at which the object will hit the ground is approximately [tex]\( t \approx 3.988 \, \text{seconds} \)[/tex].
Given the height equation:
[tex]\[h(t) = -16t^2 + 45t + 75\][/tex]
We need to find \(t\) when \(h(t) = 0\):
[tex]\[0 = -16t^2 + 45t + 75\][/tex]
This is a quadratic equation in the standard form [tex]\[ax^2 + bx + c = 0\][/tex], where \(a = -16\), \(b = 45\), and \(c = 75\).
The quadratic formula to solve for \(t\) is given by:
[tex]\[t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\][/tex]
Let's start by calculating the discriminant, which is the part under the square root:
[tex]\[ \text{discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{discriminant} = 45^2 - 4(-16)(75) \][/tex]
[tex]\[ \text{discriminant} = 2025 + 4800 \][/tex]
[tex]\[ \text{discriminant} = 6825 \][/tex]
Now we take the square root of the discriminant:
[tex]\[ \sqrt{6825} \approx 82.6221 \][/tex]
Next, we can find the two potential solutions for \(t\):
[tex]\[ t_1 = \frac{-b + \sqrt{\text{discriminant}}}{2a} \][/tex]
[tex]\[ t_1 = \frac{-45 + 82.6221}{-32} \][/tex]
[tex]\[ t_1 = \frac{37.6221}{-32} \][/tex]
[tex]\[ t_1 \approx -1.176 \][/tex]
[tex]\[ t_2 = \frac{-b - \sqrt{\text{discriminant}}}{2a} \][/tex]
[tex]\[ t_2 = \frac{-45 - 82.6221}{-32} \][/tex]
[tex]\[ t_2 = \frac{-127.6221}{-32} \][/tex]
[tex]\[ t_2 \approx 3.988 \][/tex]
Therefore, the solutions to the equation \( -16t^2 + 45t + 75 = 0 \) are approximately \( t_1 \approx -1.176 \, \text{seconds} \) and \( t_2 \approx 3.988 \, \text{seconds} \).
Since time cannot be negative, we discard \( t_1 \approx -1.176 \).
Thus, the time at which the object will hit the ground is approximately [tex]\( t \approx 3.988 \, \text{seconds} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.