Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's determine which of the given expressions is a perfect square trinomial.
A perfect square trinomial takes the form \((a + b)^2\) or \((a - b)^2\), which expands to \(a^2 + 2ab + b^2\) for the addition form or \(a^2 - 2ab + b^2\) for the subtraction form.
Let's analyze each given expression:
1. \(50y^2 - 4x^2\)
This expression can be factored as a difference of squares:
[tex]\[50y^2 - 4x^2 = (5\sqrt{2}y)^2 - (2x)^2 = (5\sqrt{2}y - 2x)(5\sqrt{2}y + 2x)\][/tex]
This is not a perfect square trinomial.
2. \(100 - 36x^2y^2\)
This expression can also be factored as a difference of squares:
[tex]\[100 - 36x^2y^2 = (10)^2 - (6xy)^2 = (10 - 6xy)(10 + 6xy)\][/tex]
This too is not a perfect square trinomial.
3. \(16x^2 + 24xy + 9y^2\)
Let's factor this expression:
[tex]\[16x^2 + 24xy + 9y^2 = (4x + 3y)^2\][/tex]
[tex]\[ \text{Check the middle term: } 2ab = 2(4x)(3y) = 24xy \][/tex]
This expression matches the form \(a^2 + 2ab + b^2\), where \(a = 4x\) and \(b = 3y\).
Thus, \(16x^2 + 24xy + 9y^2\) is a perfect square trinomial.
4. \(49x^2 - 70xy + 10y^2\)
Consider whether this can be expressed as a square trinomial:
[tex]\[ (7x)^2 = 49x^2 \quad \text{and} \quad (c)^2 = 10y^2 \][/tex]
However, the middle term \(-70xy\) does not satisfy \(2ab \neq -70xy\).
Thus, \(49x^2 - 70xy + 10y^2\) is not a perfect square trinomial.
Based on the detailed analysis, the expression that is a perfect square trinomial is:
[tex]\[ 16x^2 + 24xy + 9y^2 \][/tex]
Therefore, the index of the perfect square trinomial is 3.
A perfect square trinomial takes the form \((a + b)^2\) or \((a - b)^2\), which expands to \(a^2 + 2ab + b^2\) for the addition form or \(a^2 - 2ab + b^2\) for the subtraction form.
Let's analyze each given expression:
1. \(50y^2 - 4x^2\)
This expression can be factored as a difference of squares:
[tex]\[50y^2 - 4x^2 = (5\sqrt{2}y)^2 - (2x)^2 = (5\sqrt{2}y - 2x)(5\sqrt{2}y + 2x)\][/tex]
This is not a perfect square trinomial.
2. \(100 - 36x^2y^2\)
This expression can also be factored as a difference of squares:
[tex]\[100 - 36x^2y^2 = (10)^2 - (6xy)^2 = (10 - 6xy)(10 + 6xy)\][/tex]
This too is not a perfect square trinomial.
3. \(16x^2 + 24xy + 9y^2\)
Let's factor this expression:
[tex]\[16x^2 + 24xy + 9y^2 = (4x + 3y)^2\][/tex]
[tex]\[ \text{Check the middle term: } 2ab = 2(4x)(3y) = 24xy \][/tex]
This expression matches the form \(a^2 + 2ab + b^2\), where \(a = 4x\) and \(b = 3y\).
Thus, \(16x^2 + 24xy + 9y^2\) is a perfect square trinomial.
4. \(49x^2 - 70xy + 10y^2\)
Consider whether this can be expressed as a square trinomial:
[tex]\[ (7x)^2 = 49x^2 \quad \text{and} \quad (c)^2 = 10y^2 \][/tex]
However, the middle term \(-70xy\) does not satisfy \(2ab \neq -70xy\).
Thus, \(49x^2 - 70xy + 10y^2\) is not a perfect square trinomial.
Based on the detailed analysis, the expression that is a perfect square trinomial is:
[tex]\[ 16x^2 + 24xy + 9y^2 \][/tex]
Therefore, the index of the perfect square trinomial is 3.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.