Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine if the value of \(2x + 1\) is twenty greater than \(8x + 5\), we need to set up the equation reflecting this condition and solve for \(x\). Let's go through the step-by-step solution:
1. Set up the equation:
According to the problem, we need \(2x + 1\) to be twenty greater than \(8x + 5\). Let's write that as an equation:
[tex]\[ 2x + 1 = 8x + 5 + 20 \][/tex]
2. Simplify the equation:
Combine like terms on the right side:
[tex]\[ 2x + 1 = 8x + 25 \][/tex]
3. Isolate the \(x\) terms:
Move the \(x\) terms to one side by subtracting \(8x\) from both sides:
[tex]\[ 2x - 8x + 1 = 25 \][/tex]
Simplify:
[tex]\[ -6x + 1 = 25 \][/tex]
4. Isolate the constant term:
Subtract 1 from both sides to move the constant to the right side:
[tex]\[ -6x = 25 - 1 \][/tex]
Simplify:
[tex]\[ -6x = 24 \][/tex]
5. Solve for \(x\):
Divide both sides by \(-6\):
[tex]\[ x = \frac{24}{-6} \][/tex]
Simplify:
[tex]\[ x = -4 \][/tex]
Hence, the solution to the problem is [tex]\(x = -4\)[/tex]. Therefore, when [tex]\(x = -4\)[/tex], the value of [tex]\(2x + 1\)[/tex] is indeed twenty greater than the value of [tex]\(8x + 5\)[/tex].
1. Set up the equation:
According to the problem, we need \(2x + 1\) to be twenty greater than \(8x + 5\). Let's write that as an equation:
[tex]\[ 2x + 1 = 8x + 5 + 20 \][/tex]
2. Simplify the equation:
Combine like terms on the right side:
[tex]\[ 2x + 1 = 8x + 25 \][/tex]
3. Isolate the \(x\) terms:
Move the \(x\) terms to one side by subtracting \(8x\) from both sides:
[tex]\[ 2x - 8x + 1 = 25 \][/tex]
Simplify:
[tex]\[ -6x + 1 = 25 \][/tex]
4. Isolate the constant term:
Subtract 1 from both sides to move the constant to the right side:
[tex]\[ -6x = 25 - 1 \][/tex]
Simplify:
[tex]\[ -6x = 24 \][/tex]
5. Solve for \(x\):
Divide both sides by \(-6\):
[tex]\[ x = \frac{24}{-6} \][/tex]
Simplify:
[tex]\[ x = -4 \][/tex]
Hence, the solution to the problem is [tex]\(x = -4\)[/tex]. Therefore, when [tex]\(x = -4\)[/tex], the value of [tex]\(2x + 1\)[/tex] is indeed twenty greater than the value of [tex]\(8x + 5\)[/tex].
Answer:
x = -4
Step-by-step explanation:
To determine if 2x + 1 is twenty greater than 8x + 5, we can set up the equation:
2x + 1 = 8x + 5 + 20
Simplify the right side of the equation:
2x + 1 = 8x + 25
Now, solve for x:
Subtract 2x from both sides:
1 = 6x + 25
Subtract 25 from both sides:
1 - 25 = 6x
-24 = 6x
Divide by 6:
x = -4
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.