Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's break down the problem step by step to understand the degrees of the sums and differences of the given polynomials.
1. Definition of Polynomials:
- Richard's polynomial: \( p_1(x) = x^7 + 3x^5 + 3x + 1 \)
- Melissa's polynomial: \( p_2(x) = x^7 + 5x + 10 \)
2. Adding the Polynomials:
To find the sum of these polynomials, we add the corresponding coefficients:
[tex]\[ p_1(x) + p_2(x) = (x^7 + 3x^5 + 3x + 1) + (x^7 + 5x + 10) \][/tex]
Combining like terms, we get:
[tex]\[ x^7 + x^7 + 3x^5 + 3x + 5x + 1 + 10 = 2x^7 + 3x^5 + 8x + 11 \][/tex]
The highest degree term in the resulting polynomial is \(2x^7\), so the degree of the sum is \(7\).
3. Subtracting the Polynomials:
To find the difference of these polynomials, we subtract the corresponding coefficients:
[tex]\[ p_1(x) - p_2(x) = (x^7 + 3x^5 + 3x + 1) - (x^7 + 5x + 10) \][/tex]
Combining like terms, we get:
[tex]\[ x^7 - x^7 + 3x^5 + 3x - 5x + 1 - 10 = 3x^5 - 2x - 9 \][/tex]
The highest degree term in the resulting polynomial is \(3x^5\), so the degree of the difference is \(5\).
Hence, the correct statement is:
Adding their polynomials together results in a polynomial with degree 7, but subtracting one polynomial from the other results in a polynomial with degree 5.
So, the correct answer is:
Adding their polynomials together results in a polynomial with degree 7, but subtracting one polynomial from the other results in a polynomial with degree 5.
1. Definition of Polynomials:
- Richard's polynomial: \( p_1(x) = x^7 + 3x^5 + 3x + 1 \)
- Melissa's polynomial: \( p_2(x) = x^7 + 5x + 10 \)
2. Adding the Polynomials:
To find the sum of these polynomials, we add the corresponding coefficients:
[tex]\[ p_1(x) + p_2(x) = (x^7 + 3x^5 + 3x + 1) + (x^7 + 5x + 10) \][/tex]
Combining like terms, we get:
[tex]\[ x^7 + x^7 + 3x^5 + 3x + 5x + 1 + 10 = 2x^7 + 3x^5 + 8x + 11 \][/tex]
The highest degree term in the resulting polynomial is \(2x^7\), so the degree of the sum is \(7\).
3. Subtracting the Polynomials:
To find the difference of these polynomials, we subtract the corresponding coefficients:
[tex]\[ p_1(x) - p_2(x) = (x^7 + 3x^5 + 3x + 1) - (x^7 + 5x + 10) \][/tex]
Combining like terms, we get:
[tex]\[ x^7 - x^7 + 3x^5 + 3x - 5x + 1 - 10 = 3x^5 - 2x - 9 \][/tex]
The highest degree term in the resulting polynomial is \(3x^5\), so the degree of the difference is \(5\).
Hence, the correct statement is:
Adding their polynomials together results in a polynomial with degree 7, but subtracting one polynomial from the other results in a polynomial with degree 5.
So, the correct answer is:
Adding their polynomials together results in a polynomial with degree 7, but subtracting one polynomial from the other results in a polynomial with degree 5.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.