Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Which are equivalent to [tex]$3^2 \cdot 3^4$[/tex]? Check all that apply.

A. [tex]$3^6$[/tex]
B. [tex]$3^8$[/tex]
C. [tex]$9^6$[/tex]
D. [tex]$3^{-4} \cdot 3^{10}$[/tex]
E. [tex]$3^0 \cdot 3^8$[/tex]
F. [tex]$3^3 \cdot 3^3$[/tex]
G. [tex]$(3 \cdot 3) \cdot (3 \cdot 3 \cdot 3 \cdot 3)$[/tex]


Sagot :

To determine which expressions are equivalent to \(3^2 \cdot 3^4\), let's start by simplifying \(3^2 \cdot 3^4\).

Using the property of exponents \(a^m \cdot a^n = a^{m+n}\):
[tex]\[ 3^2 \cdot 3^4 = 3^{2+4} = 3^6 \][/tex]

So, we need to check which of the given expressions simplify to \(3^6\):

1. \(3^6\):
- This is already in the form \(3^6\), so it is equivalent.

2. \(3^8\):
- This is \(3^8\), which is not equivalent to \(3^6\).

3. \(9^6\):
- \(9\) can be written as \(3^2\), so \(9^6 = (3^2)^6 = 3^{2 \cdot 6} = 3^{12}\), which is not equivalent to \(3^6\).

4. \(3^{-4} \cdot 3^{10}\):
- Using the property of exponents \(a^m \cdot a^n = a^{m+n}\):
[tex]\[ 3^{-4} \cdot 3^{10} = 3^{-4+10} = 3^6 \][/tex]
- This is equivalent to \(3^6\).

5. \(3^0 \cdot 3^8\):
- Using the property of exponents:
[tex]\[ 3^0 \cdot 3^8 = 3^{0+8} = 3^8 \][/tex]
- This is not equivalent to \(3^6\).

6. \(3^3 \cdot 3^3\):
- Using the property of exponents:
[tex]\[ 3^3 \cdot 3^3 = 3^{3+3} = 3^6 \][/tex]
- This is equivalent to \(3^6\).

7. \((3^2) \cdot (3^4)\):
- This is the same as the original expression \(3^2 \cdot 3^4\), which simplifies to \(3^6\).
- This is equivalent to \(3^6\).

8. \((3 \cdot 3) \cdot (3 \cdot 3 \cdot 3 \cdot 3)\):
- \((3 \cdot 3)\) can be written as \(3^2\), and \((3 \cdot 3 \cdot 3 \cdot 3)\) can be written as \(3^4\):
[tex]\[ (3 \cdot 3) \cdot (3 \cdot 3 \cdot 3 \cdot 3) = 3^2 \cdot 3^4 = 3^6 \][/tex]
- This is equivalent to \(3^6\).

Therefore, the expressions that are equivalent to \(3^2 \cdot 3^4\) are:

- \(3^6\)
- \(3^{-4} \cdot 3^{10}\)
- \(3^3 \cdot 3^3\)
- \((3 \cdot 3) \cdot(3 \cdot 3 \cdot 3 \cdot 3)\)

Thus, the equivalent expressions are numbers 1, 4, 6, and 8.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.