Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the exact value of [tex]$\cos \frac{3 \pi}{4}$[/tex].

[tex]\cos \frac{3 \pi}{4} =[/tex]


Sagot :

To find the exact value of \(\cos \frac{3\pi}{4}\), we can follow these steps:

1. Recognize the Angle in the Unit Circle:
The angle \(\frac{3\pi}{4}\) is in the second quadrant of the unit circle.

2. Reference Angle:
The reference angle for \(\frac{3\pi}{4}\) is \(\pi - \frac{3\pi}{4} = \frac{\pi}{4}\). This is useful because the cosine and sine functions have known values at \(\frac{\pi}{4}\).

3. Cosine Function in the Second Quadrant:
Cosine is negative in the second quadrant. Therefore,

[tex]\[ \cos \frac{3\pi}{4} = - \cos \frac{\pi}{4} \][/tex]

4. Value at \(\frac{\pi}{4}\):
We know from trigonometric identities that

[tex]\[ \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \][/tex]

5. Apply the Sign:
Since we determined that the cosine function is negative in the second quadrant:

[tex]\[ \cos \frac{3\pi}{4} = - \cos \frac{\pi}{4} = - \frac{\sqrt{2}}{2} \][/tex]

Thus,

[tex]\[ \cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2} \][/tex]

6. Verification with Numerical Result:
The numerical value of \(-\frac{\sqrt{2}}{2}\) is approximately \(-0.7071067811865476\), which confirms our result.

Therefore, the exact value of \(\cos \frac{3\pi}{4}\) is:

[tex]\[ \cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.