Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the quadratic equation \(4w^2 - 19w = 5\), let us proceed step-by-step.
1. Rearrange the equation in standard form:
First, rewrite the equation so that it is in the form \( ax^2 + bx + c = 0 \).
Given:
[tex]\[ 4w^2 - 19w = 5 \][/tex]
Subtract 5 from both sides to set the equation to 0:
[tex]\[ 4w^2 - 19w - 5 = 0 \][/tex]
2. Identify coefficients:
In the equation \(4w^2 - 19w - 5 = 0\),
- \( a = 4 \)
- \( b = -19 \)
- \( c = -5 \)
3. Calculate the discriminant:
The discriminant \( \Delta \) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging in the values of \( a \), \( b \), and \( c \):
[tex]\[ \Delta = (-19)^2 - 4(4)(-5) \][/tex]
[tex]\[ \Delta = 361 + 80 \][/tex]
[tex]\[ \Delta = 441 \][/tex]
4. Determine the number of solutions:
- Since \( \Delta > 0 \), there are two distinct real solutions.
5. Find the solutions using the quadratic formula:
The quadratic formula to find the roots of \( ax^2 + bx + c = 0 \) is:
[tex]\[ w = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Using the discriminant \( \Delta = 441 \):
- The positive root:
[tex]\[ w_1 = \frac{-(-19) + \sqrt{441}}{2 \cdot 4} \][/tex]
[tex]\[ w_1 = \frac{19 + 21}{8} \][/tex]
[tex]\[ w_1 = \frac{40}{8} \][/tex]
[tex]\[ w_1 = 5 \][/tex]
- The negative root:
[tex]\[ w_2 = \frac{-(-19) - \sqrt{441}}{2 \cdot 4} \][/tex]
[tex]\[ w_2 = \frac{19 - 21}{8} \][/tex]
[tex]\[ w_2 = \frac{-2}{8} \][/tex]
[tex]\[ w_2 = -0.25 \][/tex]
6. Write the solutions:
The solutions to the equation \(4w^2 - 19w - 5 = 0\) are:
[tex]\[ w = 5, -0.25 \][/tex]
Therefore, the answers are [tex]\( w = 5 \)[/tex] and [tex]\( w = -0.25 \)[/tex].
1. Rearrange the equation in standard form:
First, rewrite the equation so that it is in the form \( ax^2 + bx + c = 0 \).
Given:
[tex]\[ 4w^2 - 19w = 5 \][/tex]
Subtract 5 from both sides to set the equation to 0:
[tex]\[ 4w^2 - 19w - 5 = 0 \][/tex]
2. Identify coefficients:
In the equation \(4w^2 - 19w - 5 = 0\),
- \( a = 4 \)
- \( b = -19 \)
- \( c = -5 \)
3. Calculate the discriminant:
The discriminant \( \Delta \) of a quadratic equation \( ax^2 + bx + c = 0 \) is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging in the values of \( a \), \( b \), and \( c \):
[tex]\[ \Delta = (-19)^2 - 4(4)(-5) \][/tex]
[tex]\[ \Delta = 361 + 80 \][/tex]
[tex]\[ \Delta = 441 \][/tex]
4. Determine the number of solutions:
- Since \( \Delta > 0 \), there are two distinct real solutions.
5. Find the solutions using the quadratic formula:
The quadratic formula to find the roots of \( ax^2 + bx + c = 0 \) is:
[tex]\[ w = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Using the discriminant \( \Delta = 441 \):
- The positive root:
[tex]\[ w_1 = \frac{-(-19) + \sqrt{441}}{2 \cdot 4} \][/tex]
[tex]\[ w_1 = \frac{19 + 21}{8} \][/tex]
[tex]\[ w_1 = \frac{40}{8} \][/tex]
[tex]\[ w_1 = 5 \][/tex]
- The negative root:
[tex]\[ w_2 = \frac{-(-19) - \sqrt{441}}{2 \cdot 4} \][/tex]
[tex]\[ w_2 = \frac{19 - 21}{8} \][/tex]
[tex]\[ w_2 = \frac{-2}{8} \][/tex]
[tex]\[ w_2 = -0.25 \][/tex]
6. Write the solutions:
The solutions to the equation \(4w^2 - 19w - 5 = 0\) are:
[tex]\[ w = 5, -0.25 \][/tex]
Therefore, the answers are [tex]\( w = 5 \)[/tex] and [tex]\( w = -0.25 \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.