Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Consider the expression:
[tex]\[ \frac{6^7}{6^4} \][/tex]

1. Express each exponent in expanded form:
[tex]\[ \frac{6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6}{6 \cdot 6 \cdot 6 \cdot 6} \][/tex]

2. Divide common factors:

What is the exponent of the simplified power?


Sagot :

Let's solve the given expression step-by-step.

Given expression:
[tex]\[ \frac{6^7}{6^4} \][/tex]

1. Express each exponent in expanded form:
[tex]\[ \frac{6^7}{6^4} = \frac{6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6}{6 \cdot 6 \cdot 6 \cdot 6} \][/tex]

2. Divide the common factors from the numerator and the denominator:
[tex]\[ \frac{6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6 \cdot 6}{6 \cdot 6 \cdot 6 \cdot 6} = 6 \cdot 6 \cdot 6 \][/tex]

After canceling out the common \(6\)s from the numerator and the denominator, we are left with:
[tex]\[ 6 \cdot 6 \cdot 6 = 6^3 \][/tex]

Thus, the exponent of the simplified power is:

[tex]\[ 3 \][/tex]