Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's simplify the expression \(\frac{5x^2 - 80}{x^2 - 7x + 12}\) step-by-step.
Step 1: Factor the Numerator
The numerator is \(5x^2 - 80\).
First, factor out the common factor in the numerator: \(5\).
[tex]\[ 5x^2 - 80 = 5(x^2 - 16) \][/tex]
Next, notice that \(x^2 - 16\) is a difference of squares. Recall the difference of squares formula: \(a^2 - b^2 = (a + b)(a - b)\).
Apply this to \(x^2 - 16\):
[tex]\[ x^2 - 16 = (x + 4)(x - 4) \][/tex]
Therefore, the numerator can be factored as:
[tex]\[ 5(x^2 - 16) = 5(x + 4)(x - 4) \][/tex]
Step 2: Factor the Denominator
The denominator is \(x^2 - 7x + 12\).
We need to factor this quadratic expression. We look for two numbers that multiply to \(12\) and add up to \(-7\). These numbers are \(-3\) and \(-4\).
Thus, we can write the quadratic expression as a product of two binomials:
[tex]\[ x^2 - 7x + 12 = (x - 3)(x - 4) \][/tex]
Step 3: Form the Fraction with Factored Terms
Now, rewrite the expression with the factored numerator and denominator:
[tex]\[ \frac{5x^2 - 80}{x^2 - 7x + 12} = \frac{5(x + 4)(x - 4)}{(x - 3)(x - 4)} \][/tex]
Step 4: Simplify the Expression
Notice that \((x - 4)\) appears in both the numerator and the denominator, so they can be cancelled out:
[tex]\[ \frac{5(x + 4)(x - 4)}{(x - 3)(x - 4)} = \frac{5(x + 4) \cancel{(x - 4)}}{(x - 3) \cancel{(x - 4)}} \][/tex]
After canceling, we are left with:
[tex]\[ \frac{5(x + 4)}{x - 3} \][/tex]
Thus, the simplified form of the expression is:
[tex]\[ \boxed{\frac{5(x + 4)}{x - 3}} \][/tex]
Step 1: Factor the Numerator
The numerator is \(5x^2 - 80\).
First, factor out the common factor in the numerator: \(5\).
[tex]\[ 5x^2 - 80 = 5(x^2 - 16) \][/tex]
Next, notice that \(x^2 - 16\) is a difference of squares. Recall the difference of squares formula: \(a^2 - b^2 = (a + b)(a - b)\).
Apply this to \(x^2 - 16\):
[tex]\[ x^2 - 16 = (x + 4)(x - 4) \][/tex]
Therefore, the numerator can be factored as:
[tex]\[ 5(x^2 - 16) = 5(x + 4)(x - 4) \][/tex]
Step 2: Factor the Denominator
The denominator is \(x^2 - 7x + 12\).
We need to factor this quadratic expression. We look for two numbers that multiply to \(12\) and add up to \(-7\). These numbers are \(-3\) and \(-4\).
Thus, we can write the quadratic expression as a product of two binomials:
[tex]\[ x^2 - 7x + 12 = (x - 3)(x - 4) \][/tex]
Step 3: Form the Fraction with Factored Terms
Now, rewrite the expression with the factored numerator and denominator:
[tex]\[ \frac{5x^2 - 80}{x^2 - 7x + 12} = \frac{5(x + 4)(x - 4)}{(x - 3)(x - 4)} \][/tex]
Step 4: Simplify the Expression
Notice that \((x - 4)\) appears in both the numerator and the denominator, so they can be cancelled out:
[tex]\[ \frac{5(x + 4)(x - 4)}{(x - 3)(x - 4)} = \frac{5(x + 4) \cancel{(x - 4)}}{(x - 3) \cancel{(x - 4)}} \][/tex]
After canceling, we are left with:
[tex]\[ \frac{5(x + 4)}{x - 3} \][/tex]
Thus, the simplified form of the expression is:
[tex]\[ \boxed{\frac{5(x + 4)}{x - 3}} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.