Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Simplify.

[tex]\[ \frac{5x^2 - 80}{x^2 - 7x + 12} \][/tex]


Sagot :

Sure! Let's simplify the expression \(\frac{5x^2 - 80}{x^2 - 7x + 12}\) step-by-step.

Step 1: Factor the Numerator

The numerator is \(5x^2 - 80\).

First, factor out the common factor in the numerator: \(5\).

[tex]\[ 5x^2 - 80 = 5(x^2 - 16) \][/tex]

Next, notice that \(x^2 - 16\) is a difference of squares. Recall the difference of squares formula: \(a^2 - b^2 = (a + b)(a - b)\).

Apply this to \(x^2 - 16\):

[tex]\[ x^2 - 16 = (x + 4)(x - 4) \][/tex]

Therefore, the numerator can be factored as:

[tex]\[ 5(x^2 - 16) = 5(x + 4)(x - 4) \][/tex]

Step 2: Factor the Denominator

The denominator is \(x^2 - 7x + 12\).

We need to factor this quadratic expression. We look for two numbers that multiply to \(12\) and add up to \(-7\). These numbers are \(-3\) and \(-4\).

Thus, we can write the quadratic expression as a product of two binomials:

[tex]\[ x^2 - 7x + 12 = (x - 3)(x - 4) \][/tex]

Step 3: Form the Fraction with Factored Terms

Now, rewrite the expression with the factored numerator and denominator:

[tex]\[ \frac{5x^2 - 80}{x^2 - 7x + 12} = \frac{5(x + 4)(x - 4)}{(x - 3)(x - 4)} \][/tex]

Step 4: Simplify the Expression

Notice that \((x - 4)\) appears in both the numerator and the denominator, so they can be cancelled out:

[tex]\[ \frac{5(x + 4)(x - 4)}{(x - 3)(x - 4)} = \frac{5(x + 4) \cancel{(x - 4)}}{(x - 3) \cancel{(x - 4)}} \][/tex]

After canceling, we are left with:

[tex]\[ \frac{5(x + 4)}{x - 3} \][/tex]

Thus, the simplified form of the expression is:

[tex]\[ \boxed{\frac{5(x + 4)}{x - 3}} \][/tex]