Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which planet revolves at a higher speed around the sun, we need to consider the gravitational force acting on each planet. The force of gravity is given by the equation \( F = \frac{G \cdot m_1 \cdot m_2}{r^2} \), where \( G \) is the gravitational constant, \( m_1 \) and \( m_2 \) are the masses of the two objects, and \( r \) is the distance between them. Because gravitational force is inversely proportional to the square of the distance \( r \), the closer a planet is to the Sun, the stronger the gravitational pull it experiences.
For Planet Y, which is at a distance of 1 AU from the Sun:
[tex]\[ F_Y = \frac{1}{(1)^2} = 1.0 \text{ (arbitrary units)} \][/tex]
For Planet Z, which is at a distance of 0.39 AU from the Sun:
[tex]\[ F_Z = \frac{1}{(0.39)^2} \approx 6.575 \text{ (arbitrary units)} \][/tex]
From these calculations:
1. The gravitational force experienced by Planet Y is \( 1.0 \) arbitrary units.
2. The gravitational force experienced by Planet Z is approximately \( 6.575 \) arbitrary units.
Since Planet Z is closer to the Sun, it experiences a stronger gravitational force compared to Planet Y. The stronger gravitational force on Planet Z means it must travel at a higher speed to maintain its orbit. Thus, Planet Z revolves at a higher speed around the Sun.
Therefore, the statement that best explains which planet revolves at a higher speed is:
Planet Z, because the gravitational force is strengthened by distance.
For Planet Y, which is at a distance of 1 AU from the Sun:
[tex]\[ F_Y = \frac{1}{(1)^2} = 1.0 \text{ (arbitrary units)} \][/tex]
For Planet Z, which is at a distance of 0.39 AU from the Sun:
[tex]\[ F_Z = \frac{1}{(0.39)^2} \approx 6.575 \text{ (arbitrary units)} \][/tex]
From these calculations:
1. The gravitational force experienced by Planet Y is \( 1.0 \) arbitrary units.
2. The gravitational force experienced by Planet Z is approximately \( 6.575 \) arbitrary units.
Since Planet Z is closer to the Sun, it experiences a stronger gravitational force compared to Planet Y. The stronger gravitational force on Planet Z means it must travel at a higher speed to maintain its orbit. Thus, Planet Z revolves at a higher speed around the Sun.
Therefore, the statement that best explains which planet revolves at a higher speed is:
Planet Z, because the gravitational force is strengthened by distance.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.