Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the expression equivalent to \(7 x^2 \sqrt{2 x^4} \cdot 6 \sqrt{2 x^{12}}\), let's go through the steps of simplification step by step.
First, we need to simplify the square roots within the expression.
1. Simplify \(\sqrt{2 x^4}\):
[tex]\[ \sqrt{2 x^4} = \sqrt{2} \cdot \sqrt{x^4} = \sqrt{2} \cdot x^2 \][/tex]
2. Simplify \(\sqrt{2 x^{12}}\):
[tex]\[ \sqrt{2 x^{12}} = \sqrt{2} \cdot \sqrt{x^{12}} = \sqrt{2} \cdot x^6 \][/tex]
Now, substitute these simplified forms back into the original expression:
[tex]\[ 7 x^2 \sqrt{2 x^4} \cdot 6 \sqrt{2 x^{12}} = 7 x^2 (\sqrt{2} \cdot x^2) \cdot 6 (\sqrt{2} \cdot x^6) \][/tex]
Next, combine like terms and constants:
[tex]\[ 7 x^2 \cdot \sqrt{2} \cdot x^2 \cdot 6 \cdot \sqrt{2} \cdot x^6 \][/tex]
First, multiply the constants:
[tex]\[ 7 \cdot 6 = 42 \][/tex]
Combine the square roots:
[tex]\[ \sqrt{2} \cdot \sqrt{2} = \sqrt{2^2} = \sqrt{4} = 2 \][/tex]
So the expression becomes:
[tex]\[ 42 x^2 \cdot x^2 \cdot x^6 \cdot 2 \][/tex]
Combine the terms with \(x\):
[tex]\[ x^2 \cdot x^2 \cdot x^6 = x^{2+2+6} = x^{10} \][/tex]
Now, multiply all components together:
[tex]\[ 42 \cdot 2 \cdot x^{10} = 84 x^{10} \][/tex]
Therefore, the equivalent expression is:
\[
\boxed{84 x^{10}}
\
First, we need to simplify the square roots within the expression.
1. Simplify \(\sqrt{2 x^4}\):
[tex]\[ \sqrt{2 x^4} = \sqrt{2} \cdot \sqrt{x^4} = \sqrt{2} \cdot x^2 \][/tex]
2. Simplify \(\sqrt{2 x^{12}}\):
[tex]\[ \sqrt{2 x^{12}} = \sqrt{2} \cdot \sqrt{x^{12}} = \sqrt{2} \cdot x^6 \][/tex]
Now, substitute these simplified forms back into the original expression:
[tex]\[ 7 x^2 \sqrt{2 x^4} \cdot 6 \sqrt{2 x^{12}} = 7 x^2 (\sqrt{2} \cdot x^2) \cdot 6 (\sqrt{2} \cdot x^6) \][/tex]
Next, combine like terms and constants:
[tex]\[ 7 x^2 \cdot \sqrt{2} \cdot x^2 \cdot 6 \cdot \sqrt{2} \cdot x^6 \][/tex]
First, multiply the constants:
[tex]\[ 7 \cdot 6 = 42 \][/tex]
Combine the square roots:
[tex]\[ \sqrt{2} \cdot \sqrt{2} = \sqrt{2^2} = \sqrt{4} = 2 \][/tex]
So the expression becomes:
[tex]\[ 42 x^2 \cdot x^2 \cdot x^6 \cdot 2 \][/tex]
Combine the terms with \(x\):
[tex]\[ x^2 \cdot x^2 \cdot x^6 = x^{2+2+6} = x^{10} \][/tex]
Now, multiply all components together:
[tex]\[ 42 \cdot 2 \cdot x^{10} = 84 x^{10} \][/tex]
Therefore, the equivalent expression is:
\[
\boxed{84 x^{10}}
\
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.