At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which expression is equivalent to \( y^{\frac{2}{5}} \), we need to simplify and analyze each given option one by one. Let’s work through each option.
### Option A: \(\sqrt[5]{2 y}\)
This expression represents the fifth root of \(2y\). Written in fractional exponent form, it is:
[tex]\[ \sqrt[5]{2 y} = (2 y)^{\frac{1}{5}} \][/tex]
This is not equivalent to \( y^{\frac{2}{5}} \), because the exponent of \( y \) is \(\frac{1}{5}\) rather than \(\frac{2}{5}\).
### Option B: \(\sqrt[5]{y^2}\)
This expression represents the fifth root of \( y^2 \). Written in fractional exponent form, it is:
[tex]\[ \sqrt[5]{y^2} = \left(y^2\right)^{\frac{1}{5}} \][/tex]
Using the property of exponents \( (a^m)^n = a^{m \cdot n} \):
[tex]\[ \left(y^2\right)^{\frac{1}{5}} = y^{2 \cdot \frac{1}{5}} = y^{\frac{2}{5}} \][/tex]
This matches the original expression \( y^{\frac{2}{5}} \).
### Option C: \(\sqrt{y^5}\)
This expression represents the square root of \( y^5 \). Written in fractional exponent form, it is:
[tex]\[ \sqrt{y^5} = \left(y^5\right)^{\frac{1}{2}} \][/tex]
Using the property of exponents:
[tex]\[ \left(y^5\right)^{\frac{1}{2}} = y^{5 \cdot \frac{1}{2}} = y^{\frac{5}{2}} \][/tex]
This is not equivalent to \( y^{\frac{2}{5}} \), because the exponent of \( y \) is \(\frac{5}{2}\) rather than \(\frac{2}{5}\).
### Option D: \(2 \sqrt[5]{y}\)
This expression represents 2 times the fifth root of \( y \). Written in fractional exponent form, it is:
[tex]\[ 2 \sqrt[5]{y} = 2 \cdot y^{\frac{1}{5}} \][/tex]
This form retains the 2 as a constant multiplier, and the exponent of \( y \) is \(\frac{1}{5}\), not \(\frac{2}{5}\).
### Conclusion
From the analysis, the expression that is equivalent to \( y^{\frac{2}{5}} \) is:
[tex]\[ \boxed{\text{B.} \ \sqrt[5]{y^2}} \][/tex]
### Option A: \(\sqrt[5]{2 y}\)
This expression represents the fifth root of \(2y\). Written in fractional exponent form, it is:
[tex]\[ \sqrt[5]{2 y} = (2 y)^{\frac{1}{5}} \][/tex]
This is not equivalent to \( y^{\frac{2}{5}} \), because the exponent of \( y \) is \(\frac{1}{5}\) rather than \(\frac{2}{5}\).
### Option B: \(\sqrt[5]{y^2}\)
This expression represents the fifth root of \( y^2 \). Written in fractional exponent form, it is:
[tex]\[ \sqrt[5]{y^2} = \left(y^2\right)^{\frac{1}{5}} \][/tex]
Using the property of exponents \( (a^m)^n = a^{m \cdot n} \):
[tex]\[ \left(y^2\right)^{\frac{1}{5}} = y^{2 \cdot \frac{1}{5}} = y^{\frac{2}{5}} \][/tex]
This matches the original expression \( y^{\frac{2}{5}} \).
### Option C: \(\sqrt{y^5}\)
This expression represents the square root of \( y^5 \). Written in fractional exponent form, it is:
[tex]\[ \sqrt{y^5} = \left(y^5\right)^{\frac{1}{2}} \][/tex]
Using the property of exponents:
[tex]\[ \left(y^5\right)^{\frac{1}{2}} = y^{5 \cdot \frac{1}{2}} = y^{\frac{5}{2}} \][/tex]
This is not equivalent to \( y^{\frac{2}{5}} \), because the exponent of \( y \) is \(\frac{5}{2}\) rather than \(\frac{2}{5}\).
### Option D: \(2 \sqrt[5]{y}\)
This expression represents 2 times the fifth root of \( y \). Written in fractional exponent form, it is:
[tex]\[ 2 \sqrt[5]{y} = 2 \cdot y^{\frac{1}{5}} \][/tex]
This form retains the 2 as a constant multiplier, and the exponent of \( y \) is \(\frac{1}{5}\), not \(\frac{2}{5}\).
### Conclusion
From the analysis, the expression that is equivalent to \( y^{\frac{2}{5}} \) is:
[tex]\[ \boxed{\text{B.} \ \sqrt[5]{y^2}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.