Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Which expression is equivalent to [tex]$y^{\frac{2}{5}}[tex]$[/tex], if [tex]$[/tex]y \neq 0$[/tex]?

A. [tex]$\sqrt[5]{2 y}$[/tex]
B. [tex]$\sqrt[5]{y^2}$[/tex]
C. [tex]$\sqrt{y^5}$[/tex]
D. [tex]$2 \sqrt[5]{y}$[/tex]


Sagot :

To determine which expression is equivalent to \( y^{\frac{2}{5}} \), we need to simplify and analyze each given option one by one. Let’s work through each option.

### Option A: \(\sqrt[5]{2 y}\)
This expression represents the fifth root of \(2y\). Written in fractional exponent form, it is:
[tex]\[ \sqrt[5]{2 y} = (2 y)^{\frac{1}{5}} \][/tex]

This is not equivalent to \( y^{\frac{2}{5}} \), because the exponent of \( y \) is \(\frac{1}{5}\) rather than \(\frac{2}{5}\).

### Option B: \(\sqrt[5]{y^2}\)
This expression represents the fifth root of \( y^2 \). Written in fractional exponent form, it is:
[tex]\[ \sqrt[5]{y^2} = \left(y^2\right)^{\frac{1}{5}} \][/tex]
Using the property of exponents \( (a^m)^n = a^{m \cdot n} \):
[tex]\[ \left(y^2\right)^{\frac{1}{5}} = y^{2 \cdot \frac{1}{5}} = y^{\frac{2}{5}} \][/tex]

This matches the original expression \( y^{\frac{2}{5}} \).

### Option C: \(\sqrt{y^5}\)
This expression represents the square root of \( y^5 \). Written in fractional exponent form, it is:
[tex]\[ \sqrt{y^5} = \left(y^5\right)^{\frac{1}{2}} \][/tex]
Using the property of exponents:
[tex]\[ \left(y^5\right)^{\frac{1}{2}} = y^{5 \cdot \frac{1}{2}} = y^{\frac{5}{2}} \][/tex]

This is not equivalent to \( y^{\frac{2}{5}} \), because the exponent of \( y \) is \(\frac{5}{2}\) rather than \(\frac{2}{5}\).

### Option D: \(2 \sqrt[5]{y}\)
This expression represents 2 times the fifth root of \( y \). Written in fractional exponent form, it is:
[tex]\[ 2 \sqrt[5]{y} = 2 \cdot y^{\frac{1}{5}} \][/tex]

This form retains the 2 as a constant multiplier, and the exponent of \( y \) is \(\frac{1}{5}\), not \(\frac{2}{5}\).

### Conclusion
From the analysis, the expression that is equivalent to \( y^{\frac{2}{5}} \) is:

[tex]\[ \boxed{\text{B.} \ \sqrt[5]{y^2}} \][/tex]