Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve for the force between two charged objects using Coulomb's law, we can follow these steps:
1. Identify the given values:
- Charge of object \( A \), \( q_1 = 4.0 \times 10^{-6} \, C \)
- Charge of object \( B \), \( q_2 = 2.0 \times 10^{-6} \, C \)
- Distance between the objects, \( r = 0.04 \, m \)
- Coulomb's constant, \( k = 9.0 \times 10^9 \, N \cdot m^2 / C^2 \)
2. Write down Coulomb's law:
[tex]\[ F = k \cdot \frac{q_1 \cdot q_2}{r^2} \][/tex]
Where:
- \( F \) is the force between the two charges
- \( k \) is Coulomb's constant
- \( q_1 \) and \( q_2 \) are the magnitudes of the two charges
- \( r \) is the distance between the charges
3. Substitute the given values into Coulomb's law:
[tex]\[ F = 9.0 \times 10^9 \, \frac{N \cdot m^2}{C^2} \cdot \frac{(4.0 \times 10^{-6} \, C) \cdot (2.0 \times 10^{-6} \, C)}{(0.04 \, m)^2} \][/tex]
4. Calculate the product of the charges:
[tex]\[ q_1 \cdot q_2 = (4.0 \times 10^{-6}) \cdot (2.0 \times 10^{-6}) = 8.0 \times 10^{-12} \, C^2 \][/tex]
5. Calculate the square of the distance:
[tex]\[ r^2 = (0.04 \, m)^2 = 0.0016 \, m^2 \][/tex]
6. Combine the values and solve for \( F \):
[tex]\[ F = 9.0 \times 10^9 \, \frac{N \cdot m^2}{C^2} \cdot \frac{8.0 \times 10^{-12} \, C^2}{0.0016 \, m^2} \][/tex]
7. Divide the product of the charges by the distance squared:
[tex]\[ \frac{8.0 \times 10^{-12} \, C^2}{0.0016 \, m^2} = 5.0 \times 10^{-9} \, C^2 / m^2 \][/tex]
8. Multiply by Coulomb’s constant:
[tex]\[ F = 9.0 \times 10^9 \cdot 5.0 \times 10^{-9} = 45 \, N \][/tex]
Therefore, the force on \( A \) is \( 45 \, N \). The correct answer is:
[tex]\[ \boxed{45 \, N} \][/tex]
1. Identify the given values:
- Charge of object \( A \), \( q_1 = 4.0 \times 10^{-6} \, C \)
- Charge of object \( B \), \( q_2 = 2.0 \times 10^{-6} \, C \)
- Distance between the objects, \( r = 0.04 \, m \)
- Coulomb's constant, \( k = 9.0 \times 10^9 \, N \cdot m^2 / C^2 \)
2. Write down Coulomb's law:
[tex]\[ F = k \cdot \frac{q_1 \cdot q_2}{r^2} \][/tex]
Where:
- \( F \) is the force between the two charges
- \( k \) is Coulomb's constant
- \( q_1 \) and \( q_2 \) are the magnitudes of the two charges
- \( r \) is the distance between the charges
3. Substitute the given values into Coulomb's law:
[tex]\[ F = 9.0 \times 10^9 \, \frac{N \cdot m^2}{C^2} \cdot \frac{(4.0 \times 10^{-6} \, C) \cdot (2.0 \times 10^{-6} \, C)}{(0.04 \, m)^2} \][/tex]
4. Calculate the product of the charges:
[tex]\[ q_1 \cdot q_2 = (4.0 \times 10^{-6}) \cdot (2.0 \times 10^{-6}) = 8.0 \times 10^{-12} \, C^2 \][/tex]
5. Calculate the square of the distance:
[tex]\[ r^2 = (0.04 \, m)^2 = 0.0016 \, m^2 \][/tex]
6. Combine the values and solve for \( F \):
[tex]\[ F = 9.0 \times 10^9 \, \frac{N \cdot m^2}{C^2} \cdot \frac{8.0 \times 10^{-12} \, C^2}{0.0016 \, m^2} \][/tex]
7. Divide the product of the charges by the distance squared:
[tex]\[ \frac{8.0 \times 10^{-12} \, C^2}{0.0016 \, m^2} = 5.0 \times 10^{-9} \, C^2 / m^2 \][/tex]
8. Multiply by Coulomb’s constant:
[tex]\[ F = 9.0 \times 10^9 \cdot 5.0 \times 10^{-9} = 45 \, N \][/tex]
Therefore, the force on \( A \) is \( 45 \, N \). The correct answer is:
[tex]\[ \boxed{45 \, N} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.