Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's perform the polynomial division of \(8x^3 + 6x^2 + 10x - 1\) by \(1 - 4x\) step by step.
### Step-by-Step Polynomial Division
1. Setup the division:
We are dividing \(8x^3 + 6x^2 + 10x - 1\) by \(1 - 4x\). We'll write our polynomials in the standard form.
2. Divide the leading terms:
The leading term of the dividend \(8x^3\) divided by the leading term of the divisor \(-4x\):
[tex]\[ \frac{8x^3}{-4x} = -2x^2 \][/tex]
This becomes the first term of our quotient.
3. Multiply and subtract:
Multiply the entire divisor \(1 - 4x\) by \(-2x^2\) and subtract it from the original polynomial:
[tex]\[ (1 - 4x) \cdot (-2x^2) = -2x^2 + 8x^3 \][/tex]
Subtract this from \(8x^3 + 6x^2 + 10x - 1\):
[tex]\[ \begin{array}{r} 8x^3 + 6x^2 + 10x - 1 \\ - (8x^3 - 8x^3 + 16x^2) \\ \hline 6x^2 - 16x^2 + 10x - 1 \\ 6x^2 - 16x^2 = -10x^2 \\ 10x - 1 \end{array} \][/tex]
So, now, our polynomial becomes \(-10x^2 + 10x - 1\).
4. Repeat the process:
Divide the new leading term \(-10x^2\) by the leading term of the divisor \(-4x\):
[tex]\[ \frac{-10x^2}{-4x} = 2.5x \][/tex]
Multiply the entire divisor \(1 - 4x\) by \(2.5x\) and subtract:
[tex]\[ (1 - 4x) \cdot (2.5x) = 2.5x - 10x^2 \][/tex]
Subtract this from \(-10x^2 + 10x - 1\):
[tex]\[ \begin{array}{r} -10x^2 + 10x - 1 \\ - (-10x^2 + 10x) \\ \hline 10x - 10x = 0x - 1 + 10 \\ -1 \end{array} \][/tex]
Now, our polynomial is reduced to -1.
5. Check the remainder:
Since our polynomial \(-1\) is a constant and cannot be divided further by \(1 - 4x\), this is our remainder.
### Final Answer:
The quotient is:
[tex]\[ -2x^2 + 2.5x \][/tex]
The remainder is:
[tex]\[ -1 \][/tex]
So, when we divide [tex]\(8x^3 + 6x^2 + 10x - 1\)[/tex] by [tex]\(1 - 4x\)[/tex], the quotient is [tex]\(-2x^2 + 2.5x\)[/tex] and the remainder is [tex]\(-1\)[/tex].
### Step-by-Step Polynomial Division
1. Setup the division:
We are dividing \(8x^3 + 6x^2 + 10x - 1\) by \(1 - 4x\). We'll write our polynomials in the standard form.
2. Divide the leading terms:
The leading term of the dividend \(8x^3\) divided by the leading term of the divisor \(-4x\):
[tex]\[ \frac{8x^3}{-4x} = -2x^2 \][/tex]
This becomes the first term of our quotient.
3. Multiply and subtract:
Multiply the entire divisor \(1 - 4x\) by \(-2x^2\) and subtract it from the original polynomial:
[tex]\[ (1 - 4x) \cdot (-2x^2) = -2x^2 + 8x^3 \][/tex]
Subtract this from \(8x^3 + 6x^2 + 10x - 1\):
[tex]\[ \begin{array}{r} 8x^3 + 6x^2 + 10x - 1 \\ - (8x^3 - 8x^3 + 16x^2) \\ \hline 6x^2 - 16x^2 + 10x - 1 \\ 6x^2 - 16x^2 = -10x^2 \\ 10x - 1 \end{array} \][/tex]
So, now, our polynomial becomes \(-10x^2 + 10x - 1\).
4. Repeat the process:
Divide the new leading term \(-10x^2\) by the leading term of the divisor \(-4x\):
[tex]\[ \frac{-10x^2}{-4x} = 2.5x \][/tex]
Multiply the entire divisor \(1 - 4x\) by \(2.5x\) and subtract:
[tex]\[ (1 - 4x) \cdot (2.5x) = 2.5x - 10x^2 \][/tex]
Subtract this from \(-10x^2 + 10x - 1\):
[tex]\[ \begin{array}{r} -10x^2 + 10x - 1 \\ - (-10x^2 + 10x) \\ \hline 10x - 10x = 0x - 1 + 10 \\ -1 \end{array} \][/tex]
Now, our polynomial is reduced to -1.
5. Check the remainder:
Since our polynomial \(-1\) is a constant and cannot be divided further by \(1 - 4x\), this is our remainder.
### Final Answer:
The quotient is:
[tex]\[ -2x^2 + 2.5x \][/tex]
The remainder is:
[tex]\[ -1 \][/tex]
So, when we divide [tex]\(8x^3 + 6x^2 + 10x - 1\)[/tex] by [tex]\(1 - 4x\)[/tex], the quotient is [tex]\(-2x^2 + 2.5x\)[/tex] and the remainder is [tex]\(-1\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.