At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To graph the function \( g(x) = \sqrt[3]{x-5} + 7 \) by transforming the parent function, we need to understand how transformations affect the graph of a function. The parent function in this case is \( f(x) = \sqrt[3]{x} \), which is the cube root function.
The transformations that occur are:
1. Horizontal Translation (Shift Right or Left):
- If we replace \( x \) with \( x - k \) in the function \( f(x) \), this translates the graph horizontally.
- In \( g(x) = \sqrt[3]{x-5} + 7 \), the expression inside the cube root is \( x - 5 \). This means that the graph of \( \sqrt[3]{x} \) is translated 5 units to the right.
2. Vertical Translation (Shift Up or Down):
- If we add or subtract a constant \( k \) from the function \( f(x) \), this translates the graph vertically.
- In \( g(x) = \sqrt[3]{x-5} + 7 \), the term \( + 7 \) outside the cube root function indicates a vertical translation. This means that the graph of \( \sqrt[3]{x} \) is translated 7 units up.
Thus, combining these two transformations:
- The graph of \( \sqrt[3]{x} \) is translated 5 units to the right.
- The graph is then translated 7 units up.
Therefore, the correct description of how to graph \( g(x) = \sqrt[3]{x-5} + 7 \) by transforming the parent function is:
Translate the parent function 5 units to the right and 7 units up.
The transformations that occur are:
1. Horizontal Translation (Shift Right or Left):
- If we replace \( x \) with \( x - k \) in the function \( f(x) \), this translates the graph horizontally.
- In \( g(x) = \sqrt[3]{x-5} + 7 \), the expression inside the cube root is \( x - 5 \). This means that the graph of \( \sqrt[3]{x} \) is translated 5 units to the right.
2. Vertical Translation (Shift Up or Down):
- If we add or subtract a constant \( k \) from the function \( f(x) \), this translates the graph vertically.
- In \( g(x) = \sqrt[3]{x-5} + 7 \), the term \( + 7 \) outside the cube root function indicates a vertical translation. This means that the graph of \( \sqrt[3]{x} \) is translated 7 units up.
Thus, combining these two transformations:
- The graph of \( \sqrt[3]{x} \) is translated 5 units to the right.
- The graph is then translated 7 units up.
Therefore, the correct description of how to graph \( g(x) = \sqrt[3]{x-5} + 7 \) by transforming the parent function is:
Translate the parent function 5 units to the right and 7 units up.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.