Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To graph the function \( g(x) = \sqrt[3]{x-5} + 7 \) by transforming the parent function, we need to understand how transformations affect the graph of a function. The parent function in this case is \( f(x) = \sqrt[3]{x} \), which is the cube root function.
The transformations that occur are:
1. Horizontal Translation (Shift Right or Left):
- If we replace \( x \) with \( x - k \) in the function \( f(x) \), this translates the graph horizontally.
- In \( g(x) = \sqrt[3]{x-5} + 7 \), the expression inside the cube root is \( x - 5 \). This means that the graph of \( \sqrt[3]{x} \) is translated 5 units to the right.
2. Vertical Translation (Shift Up or Down):
- If we add or subtract a constant \( k \) from the function \( f(x) \), this translates the graph vertically.
- In \( g(x) = \sqrt[3]{x-5} + 7 \), the term \( + 7 \) outside the cube root function indicates a vertical translation. This means that the graph of \( \sqrt[3]{x} \) is translated 7 units up.
Thus, combining these two transformations:
- The graph of \( \sqrt[3]{x} \) is translated 5 units to the right.
- The graph is then translated 7 units up.
Therefore, the correct description of how to graph \( g(x) = \sqrt[3]{x-5} + 7 \) by transforming the parent function is:
Translate the parent function 5 units to the right and 7 units up.
The transformations that occur are:
1. Horizontal Translation (Shift Right or Left):
- If we replace \( x \) with \( x - k \) in the function \( f(x) \), this translates the graph horizontally.
- In \( g(x) = \sqrt[3]{x-5} + 7 \), the expression inside the cube root is \( x - 5 \). This means that the graph of \( \sqrt[3]{x} \) is translated 5 units to the right.
2. Vertical Translation (Shift Up or Down):
- If we add or subtract a constant \( k \) from the function \( f(x) \), this translates the graph vertically.
- In \( g(x) = \sqrt[3]{x-5} + 7 \), the term \( + 7 \) outside the cube root function indicates a vertical translation. This means that the graph of \( \sqrt[3]{x} \) is translated 7 units up.
Thus, combining these two transformations:
- The graph of \( \sqrt[3]{x} \) is translated 5 units to the right.
- The graph is then translated 7 units up.
Therefore, the correct description of how to graph \( g(x) = \sqrt[3]{x-5} + 7 \) by transforming the parent function is:
Translate the parent function 5 units to the right and 7 units up.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.