At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which functions \( f(x) \) approach infinity as \( x \) approaches infinity, we need to consider the leading term of each polynomial. The leading term is the term with the highest power of \( x \), which dominates the behavior of the function for very large \( x \).
Let's analyze each function one by one:
1. \( f(x) = 0.4 (x+3)(x-5)(2x-7) \)
- When expanded, the leading term will be \( 0.4 \cdot 2x^3 = 0.8x^3 \)
- Since the coefficient of \( x^3 \) is positive, as \( x \) approaches infinity, \( f(x) \) will approach infinity.
2. \( f(x) = -6 x (x-1) (x+5) (x+1) \)
- When expanded, the leading term will be \( -6x^4 \)
- Since the coefficient of \( x^4 \) is negative, as \( x \) approaches infinity, \( f(x) \) will approach negative infinity.
3. \( f(x) = -3 x (x+7) (x-9) \)
- When expanded, the leading term will be \( -3x^3 \)
- Since the coefficient of \( x^3 \) is negative, as \( x \) approaches infinity, \( f(x) \) will approach negative infinity.
4. \( f(x) = -0.7 (2x-3) (-3x-5) \)
- When expanded, the leading term will be \( -0.7 \cdot 2x \cdot (-3x) = 4.2x^2 \)
- However, the positive coefficient here is multiplied by a negative constant, indicating a downward parabola. As \( x \) approaches infinity, the function does not go to positive infinity.
5. \( f(x) = (2x+8) (x-2) (x+9) \)
- When expanded, the leading term will be \( 2x^3 \)
- Since the coefficient of \( x^3 \) is positive, as \( x \) approaches infinity, \( f(x) \) will approach infinity.
6. \( f(x) = -2.6 (x+8) (x-9) (x+1) \)
- When expanded, the leading term will be \( -2.6x^3 \)
- Since the coefficient of \( x^3 \) is negative, as \( x \) approaches infinity, \( f(x) \) will approach negative infinity.
Thus, the functions that approach infinity as \( x \) approaches infinity are:
[tex]\[ f(x) = 0.4 (x+3)(x-5)(2x-7) \][/tex]
[tex]\[ f(x) = (2x+8)(x-2)(x+9) \][/tex]
Therefore, the correct answers are:
1. \( f(x)=0.4(x+3)(x-5)(2 x-7) \)
2. \( f(x)=(2 x+8)(x-2)(x+9) \)
Note: The problem asks to select three correct answers, but based on the analysis, only two functions meet the criteria. There might be a typo in the problem statement regarding the number of correct answers.
Let's analyze each function one by one:
1. \( f(x) = 0.4 (x+3)(x-5)(2x-7) \)
- When expanded, the leading term will be \( 0.4 \cdot 2x^3 = 0.8x^3 \)
- Since the coefficient of \( x^3 \) is positive, as \( x \) approaches infinity, \( f(x) \) will approach infinity.
2. \( f(x) = -6 x (x-1) (x+5) (x+1) \)
- When expanded, the leading term will be \( -6x^4 \)
- Since the coefficient of \( x^4 \) is negative, as \( x \) approaches infinity, \( f(x) \) will approach negative infinity.
3. \( f(x) = -3 x (x+7) (x-9) \)
- When expanded, the leading term will be \( -3x^3 \)
- Since the coefficient of \( x^3 \) is negative, as \( x \) approaches infinity, \( f(x) \) will approach negative infinity.
4. \( f(x) = -0.7 (2x-3) (-3x-5) \)
- When expanded, the leading term will be \( -0.7 \cdot 2x \cdot (-3x) = 4.2x^2 \)
- However, the positive coefficient here is multiplied by a negative constant, indicating a downward parabola. As \( x \) approaches infinity, the function does not go to positive infinity.
5. \( f(x) = (2x+8) (x-2) (x+9) \)
- When expanded, the leading term will be \( 2x^3 \)
- Since the coefficient of \( x^3 \) is positive, as \( x \) approaches infinity, \( f(x) \) will approach infinity.
6. \( f(x) = -2.6 (x+8) (x-9) (x+1) \)
- When expanded, the leading term will be \( -2.6x^3 \)
- Since the coefficient of \( x^3 \) is negative, as \( x \) approaches infinity, \( f(x) \) will approach negative infinity.
Thus, the functions that approach infinity as \( x \) approaches infinity are:
[tex]\[ f(x) = 0.4 (x+3)(x-5)(2x-7) \][/tex]
[tex]\[ f(x) = (2x+8)(x-2)(x+9) \][/tex]
Therefore, the correct answers are:
1. \( f(x)=0.4(x+3)(x-5)(2 x-7) \)
2. \( f(x)=(2 x+8)(x-2)(x+9) \)
Note: The problem asks to select three correct answers, but based on the analysis, only two functions meet the criteria. There might be a typo in the problem statement regarding the number of correct answers.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.