Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

How much charge flows from a [tex]$3 V$[/tex] battery when it is connected to a [tex]9.00 \mu\text{F}[/tex] capacitor?

A. [tex]1.35 \times 10^{-5} C[/tex]
B. [tex]3.75 \times 10^{-5} C[/tex]
C. [tex]1.5 C[/tex]
D. [tex]2.7 \times 10^{-5} C[/tex]


Sagot :

To determine the amount of charge that flows from a \(3\) V battery when it is connected to a \(9.00 \) microfarad (\(\mu\)F) capacitor, we use the relationship between charge (\(Q\)), capacitance (\(C\)), and voltage (\(V\)), given by the formula:

[tex]\[ Q = C \times V \][/tex]

Here are the steps to solve the problem:

1. Identify the given values:
- Voltage (\(V\)) = \(3\) V
- Capacitance (\(C\)) = \(9.00\) \(\mu\)F

2. Convert the capacitance from microfarads to farads:
- \(1 \, \mu\text{F} = 10^{-6} \text{F}\)
- Therefore, \(9.00 \, \mu\text{F}\) = \(9.00 \times 10^{-6} \text{F}\)

3. Substitute the values into the formula:
[tex]\[ Q = (9.00 \times 10^{-6} \text{F}) \times (3 \text{ V}) \][/tex]

4. Calculate the charge (Q):
[tex]\[ Q = 2.7 \times 10^{-5} \text{C} \][/tex]

Therefore, the amount of charge that flows from the \(3\) V battery when connected to a \(9.00 \mu\text{F}\) capacitor is \(2.7 \times 10^{-5} \text{C}\).

Among the given options, the correct answer is:

[tex]\[ \boxed{2.7 \times 10^{-5} \text{C}} \][/tex]