Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the potential difference between two large parallel metal plates separated by a given distance with a known electric field, we use the relationship between electric field (E), distance (d), and potential difference (V). The formula that relates these quantities is:
[tex]\[ V = E \cdot d \][/tex]
where:
- \( V \) is the potential difference in volts (V),
- \( E \) is the electric field in newtons per coulomb (N/C),
- \( d \) is the distance between the plates in meters (m).
Here are the given values:
- The distance \( d \) between the plates is \( 6.0 \text{ cm} \).
- The electric field \( E \) is \( 600 \text{ N/C} \).
First, we need to convert the distance from centimeters to meters because the standard unit for distance in this formula is meters.
[tex]\[ 6.0 \text{ cm} = 6.0 \text{ cm} \times \frac{1 \text{ m}}{100 \text{ cm}} = 0.06 \text{ m} \][/tex]
Next, we substitute the known values into the formula:
[tex]\[ V = E \cdot d \][/tex]
[tex]\[ V = 600 \text{ N/C} \cdot 0.06 \text{ m} \][/tex]
Now, we perform the multiplication:
[tex]\[ V = 600 \cdot 0.06 \][/tex]
[tex]\[ V = 36.0 \][/tex]
So, the potential difference between the plates is \( 36.0 \text{ V} \).
Among the given choices:
[tex]$21 \text{ V}, 18 \text{ V}, 40 \text{ V}, 36 \text{ V}$[/tex],
The correct answer is:
[tex]\[ \boxed{36 \text{ V}} \][/tex]
[tex]\[ V = E \cdot d \][/tex]
where:
- \( V \) is the potential difference in volts (V),
- \( E \) is the electric field in newtons per coulomb (N/C),
- \( d \) is the distance between the plates in meters (m).
Here are the given values:
- The distance \( d \) between the plates is \( 6.0 \text{ cm} \).
- The electric field \( E \) is \( 600 \text{ N/C} \).
First, we need to convert the distance from centimeters to meters because the standard unit for distance in this formula is meters.
[tex]\[ 6.0 \text{ cm} = 6.0 \text{ cm} \times \frac{1 \text{ m}}{100 \text{ cm}} = 0.06 \text{ m} \][/tex]
Next, we substitute the known values into the formula:
[tex]\[ V = E \cdot d \][/tex]
[tex]\[ V = 600 \text{ N/C} \cdot 0.06 \text{ m} \][/tex]
Now, we perform the multiplication:
[tex]\[ V = 600 \cdot 0.06 \][/tex]
[tex]\[ V = 36.0 \][/tex]
So, the potential difference between the plates is \( 36.0 \text{ V} \).
Among the given choices:
[tex]$21 \text{ V}, 18 \text{ V}, 40 \text{ V}, 36 \text{ V}$[/tex],
The correct answer is:
[tex]\[ \boxed{36 \text{ V}} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.