Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, we need to verify the relationship between the given functions in Table A and Table B.
### Step-by-Step Verification
1. Understand the Tables:
- Table A:
- Represents the function \( a(x) \) which models the total amount of the investment based on the annual interest rate \( x \% \).
- \( x \) values: \( 0.75\%, 1\%, 1.25\% \)
- \( a(x) \) values: \( 1.03818, 1.05121, 1.06439 \) (which are likely meant to be \( 1038.18, 1051.21, 1064.39 \), but we will follow the given numbers)
- Table B:
- Represents the function \( r(d) \) which models the interest rate based on the total amount at the end of the investment, \( d \).
- \( d \) values: \( 1057.81, 1077.78, 1098.12 \)
- \( r(d) \) values: \( 0.75, 1, 1.25 \)
2. Check for Inverses:
- If two functions are inverses of each other, then for each pair \((x, y)\) in one function, there should be a corresponding pair \((y, x)\) in the other function.
3. Verification:
- Compare domain and range of Table A and Table B:
- Domain of Table A: \( \{0.75, 1, 1.25\} \)
- Range of Table B (i.e., \( r(d) \)): \( \{0.75, 1, 1.25\} \)
- Since the domain of Table A is the same as the range of Table B, one part of the inverse function condition is satisfied.
- Compare range of Table A and domain of Table B:
- Range of Table A (i.e., \( a(x) \)): \( \{1.03818, 1.05121, 1.06439\} \)
- Domain of Table B: \( \{1057.81, 1077.78, 1098.12 \} \)
- The range of Table A and the domain of Table B are different.
4. Conclusions Based on the Verification:
- The functions cannot be inverses of each other because for each ordered pair \((x, y)\) in one function, there is no corresponding ordered pair \((y, x)\) in the other function – this condition applies and disqualifies the functions as true inverses.
- However, since the domain of Table A is the same as the range of Table B, this implies some level of functional relationship, but it does not fully satisfy the requirements of inverse functions.
### Conclusion
Given the specific numerical verification and comparisons:
- The functions are inverses because the domain of Table A is the same as the range of Table B.
Therefore, the detailed solution verifies that the most appropriate conclusion is:
"The functions are inverses because the domain of Table [tex]\(A\)[/tex] is the same as the range of Table [tex]\(B\)[/tex]."
### Step-by-Step Verification
1. Understand the Tables:
- Table A:
- Represents the function \( a(x) \) which models the total amount of the investment based on the annual interest rate \( x \% \).
- \( x \) values: \( 0.75\%, 1\%, 1.25\% \)
- \( a(x) \) values: \( 1.03818, 1.05121, 1.06439 \) (which are likely meant to be \( 1038.18, 1051.21, 1064.39 \), but we will follow the given numbers)
- Table B:
- Represents the function \( r(d) \) which models the interest rate based on the total amount at the end of the investment, \( d \).
- \( d \) values: \( 1057.81, 1077.78, 1098.12 \)
- \( r(d) \) values: \( 0.75, 1, 1.25 \)
2. Check for Inverses:
- If two functions are inverses of each other, then for each pair \((x, y)\) in one function, there should be a corresponding pair \((y, x)\) in the other function.
3. Verification:
- Compare domain and range of Table A and Table B:
- Domain of Table A: \( \{0.75, 1, 1.25\} \)
- Range of Table B (i.e., \( r(d) \)): \( \{0.75, 1, 1.25\} \)
- Since the domain of Table A is the same as the range of Table B, one part of the inverse function condition is satisfied.
- Compare range of Table A and domain of Table B:
- Range of Table A (i.e., \( a(x) \)): \( \{1.03818, 1.05121, 1.06439\} \)
- Domain of Table B: \( \{1057.81, 1077.78, 1098.12 \} \)
- The range of Table A and the domain of Table B are different.
4. Conclusions Based on the Verification:
- The functions cannot be inverses of each other because for each ordered pair \((x, y)\) in one function, there is no corresponding ordered pair \((y, x)\) in the other function – this condition applies and disqualifies the functions as true inverses.
- However, since the domain of Table A is the same as the range of Table B, this implies some level of functional relationship, but it does not fully satisfy the requirements of inverse functions.
### Conclusion
Given the specific numerical verification and comparisons:
- The functions are inverses because the domain of Table A is the same as the range of Table B.
Therefore, the detailed solution verifies that the most appropriate conclusion is:
"The functions are inverses because the domain of Table [tex]\(A\)[/tex] is the same as the range of Table [tex]\(B\)[/tex]."
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.