Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Simplify:

[tex]\[ \frac{x^{-9} y^{-8} z^{-2}}{x^5 y^7 z^3} \][/tex]

Write your answer using only positive exponents.

Sagot :

To simplify the expression

[tex]\[ \frac{x^{-9} y^{-8} z^{-2}}{x^5 y^7 z^3} \][/tex]

we need to handle the exponents by using the rules of exponents, specifically the rule that states \( a^m \div a^n = a^{m-n} \).

First, let's look at the exponents for each base separately:

1. Base \( x \):
[tex]\[ \frac{x^{-9}}{x^5} = x^{-9 - 5} = x^{-14} \][/tex]

2. Base \( y \):
[tex]\[ \frac{y^{-8}}{y^7} = y^{-8 - 7} = y^{-15} \][/tex]

3. Base \( z \):
[tex]\[ \frac{z^{-2}}{z^3} = z^{-2 - 3} = z^{-5} \][/tex]

Now, we combine these results:
[tex]\[ x^{-14} y^{-15} z^{-5} \][/tex]

Following the property of exponents that \( a^{-n} = \frac{1}{a^n} \), we convert each term with a negative exponent to its reciprocal form:

[tex]\[ x^{-14} = \frac{1}{x^{14}}, \quad y^{-15} = \frac{1}{y^{15}}, \quad z^{-5} = \frac{1}{z^5} \][/tex]

Putting these together, the expression becomes:
[tex]\[ \frac{1}{x^{14}} \cdot \frac{1}{y^{15}} \cdot \frac{1}{z^5} = \frac{1}{x^{14} y^{15} z^5} \][/tex]

Therefore, the simplified form of the expression using only positive exponents is:

[tex]\[ \frac{1}{x^{14} y^{15} z^5} \][/tex]