Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To simplify the expression
[tex]\[ \frac{x^{-9} y^{-8} z^{-2}}{x^5 y^7 z^3} \][/tex]
we need to handle the exponents by using the rules of exponents, specifically the rule that states \( a^m \div a^n = a^{m-n} \).
First, let's look at the exponents for each base separately:
1. Base \( x \):
[tex]\[ \frac{x^{-9}}{x^5} = x^{-9 - 5} = x^{-14} \][/tex]
2. Base \( y \):
[tex]\[ \frac{y^{-8}}{y^7} = y^{-8 - 7} = y^{-15} \][/tex]
3. Base \( z \):
[tex]\[ \frac{z^{-2}}{z^3} = z^{-2 - 3} = z^{-5} \][/tex]
Now, we combine these results:
[tex]\[ x^{-14} y^{-15} z^{-5} \][/tex]
Following the property of exponents that \( a^{-n} = \frac{1}{a^n} \), we convert each term with a negative exponent to its reciprocal form:
[tex]\[ x^{-14} = \frac{1}{x^{14}}, \quad y^{-15} = \frac{1}{y^{15}}, \quad z^{-5} = \frac{1}{z^5} \][/tex]
Putting these together, the expression becomes:
[tex]\[ \frac{1}{x^{14}} \cdot \frac{1}{y^{15}} \cdot \frac{1}{z^5} = \frac{1}{x^{14} y^{15} z^5} \][/tex]
Therefore, the simplified form of the expression using only positive exponents is:
[tex]\[ \frac{1}{x^{14} y^{15} z^5} \][/tex]
[tex]\[ \frac{x^{-9} y^{-8} z^{-2}}{x^5 y^7 z^3} \][/tex]
we need to handle the exponents by using the rules of exponents, specifically the rule that states \( a^m \div a^n = a^{m-n} \).
First, let's look at the exponents for each base separately:
1. Base \( x \):
[tex]\[ \frac{x^{-9}}{x^5} = x^{-9 - 5} = x^{-14} \][/tex]
2. Base \( y \):
[tex]\[ \frac{y^{-8}}{y^7} = y^{-8 - 7} = y^{-15} \][/tex]
3. Base \( z \):
[tex]\[ \frac{z^{-2}}{z^3} = z^{-2 - 3} = z^{-5} \][/tex]
Now, we combine these results:
[tex]\[ x^{-14} y^{-15} z^{-5} \][/tex]
Following the property of exponents that \( a^{-n} = \frac{1}{a^n} \), we convert each term with a negative exponent to its reciprocal form:
[tex]\[ x^{-14} = \frac{1}{x^{14}}, \quad y^{-15} = \frac{1}{y^{15}}, \quad z^{-5} = \frac{1}{z^5} \][/tex]
Putting these together, the expression becomes:
[tex]\[ \frac{1}{x^{14}} \cdot \frac{1}{y^{15}} \cdot \frac{1}{z^5} = \frac{1}{x^{14} y^{15} z^5} \][/tex]
Therefore, the simplified form of the expression using only positive exponents is:
[tex]\[ \frac{1}{x^{14} y^{15} z^5} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.