Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the domain of the function \( h(x) = \frac{9x}{x(x^2 - 36)} \), we need to find where the function is undefined. The function is undefined wherever the denominator is zero, as division by zero is not possible.
First, let's rewrite the denominator to find its roots:
[tex]\[ x(x^2 - 36) \][/tex]
We notice that the term \( x^2 - 36 \) can be factored further:
[tex]\[ x(x^2 - 36) = x(x - 6)(x + 6) \][/tex]
The function is undefined when any factor of the denominator equals zero. We solve each factor set equal to zero:
1. \( x = 0 \)
2. \( x - 6 = 0 \implies x = 6 \)
3. \( x + 6 = 0 \implies x = -6 \)
So, the function is undefined at \( x = 0 \), \( x = 6 \), and \( x = -6 \).
Therefore, the domain of the function \( h(x) \) includes all real numbers except \( x = 0 \), \( x = 6 \), and \( x = -6 \).
This corresponds to the option:
[tex]\[ B. \{x \mid x \neq \pm 6, x \neq 0\} \][/tex]
Thus, the best answer is:
[tex]\[ \boxed{B} \][/tex]
First, let's rewrite the denominator to find its roots:
[tex]\[ x(x^2 - 36) \][/tex]
We notice that the term \( x^2 - 36 \) can be factored further:
[tex]\[ x(x^2 - 36) = x(x - 6)(x + 6) \][/tex]
The function is undefined when any factor of the denominator equals zero. We solve each factor set equal to zero:
1. \( x = 0 \)
2. \( x - 6 = 0 \implies x = 6 \)
3. \( x + 6 = 0 \implies x = -6 \)
So, the function is undefined at \( x = 0 \), \( x = 6 \), and \( x = -6 \).
Therefore, the domain of the function \( h(x) \) includes all real numbers except \( x = 0 \), \( x = 6 \), and \( x = -6 \).
This corresponds to the option:
[tex]\[ B. \{x \mid x \neq \pm 6, x \neq 0\} \][/tex]
Thus, the best answer is:
[tex]\[ \boxed{B} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.