Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
Step-by-step explanation:
Given: f(1)= f(3) = 0
Putting f(1) = a(1)^2 + b(1) + c
= a + b + c
Putting f(3) = a(3)^2 + b(3) + c
= 9a + 3b + c
Putting f(0)=a(0)^2 + b(0) + c = -3
= c = -3
putting c = -3 In equation (1) and equation (2) we get,
a + b - 3 = 0 9a + 3b - 3 = 0
a + b = 3 3(3a+b) = 3
a = 3 - b 3a + b = 1
3(3-b) + b = 1 [Putting a = 3 - b ]
9 - 3b +b = 1
-2b = -8
b = 4
Answer:
b = 4
Step-by-step explanation:
To find the value of b in the quadratic function f(x) = ax² + bx + c, begin by substituting f(0) = -3, and solve for c:
[tex]f(0) = -3\\\\a(0)^2+b(0)+c=-3\\\\0+0+c=-3\\\\c=-3[/tex]
Substitute c = -3 into the function:
[tex]f(x) = ax^2+bx-3[/tex]
Now, substitute f(1) = 0 and f(3) = 0 into the function to form a system of equations:
[tex]f(1)=0\\\\a(1)^2+b(1)-3=0\\\\a+b-3=0[/tex]
[tex]f(3)=0\\\\a(3)^2+b(3)-3=0\\\\9a+3b-3=0[/tex]
So, the system of equations is:
[tex]\begin{cases}a+b-3=0\\9a+3b-3=0\end{cases}[/tex]
Rearrange the first equation to isolate a:
[tex]a+b-3=0\\\\a=3-b[/tex]
Substitute a = 3 - b into the second equation and solve for b:
[tex]9(3-b)+3b-3=0\\\\27-9b+3b-3=0\\\\24-6b=0\\\\6b=24\\\\b=4[/tex]
Therefore, the value of b is:
[tex]\Large\boxed{\boxed{b=4}}[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.