Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's analyze the given vertices step by step to determine the most specific name for the polygon formed by the vertices A(-1,4), B(3,7), C(7,4), and D(3,1).
To classify the polygon, let's understand the properties it might have:
1. Calculate distances between consecutive vertices to determine the side lengths:
- Length AB: Distance between A(-1,4) and B(3,7).
- Length BC: Distance between B(3,7) and C(7,4).
- Length CD: Distance between C(7,4) and D(3,1).
- Length DA: Distance between D(3,1) and A(-1,4).
2. Calculate lengths of the diagonals to determine if opposite angles are equal:
- Diagonal AC: Distance between A(-1,4) and C(7,4).
- Diagonal BD: Distance between B(3,7) and D(3,1).
3. Check for specific polygon properties:
- Parallelogram: Opposite sides are equal in length.
- Rectangle: Parallelogram with all angles being right angles.
- Square: Rectangle with all sides equal.
- Rhombus: Parallelogram with all sides equal, but not necessarily right angles.
Given the information:
- Lengths of sides and diagonals match criteria for the classification of a Parallelogram:
- Opposite sides AB and CD are equal.
- Opposite sides BC and DA are equal.
- The diagonals may not necessarily be equal.
Thus after carefully analyzing the vertices and determining the properties hold true to a specific classification, the most specific name for the polygon with vertices A(-1,4), B(3,7), C(7,4), and D(3,1) is:
A. Parallelogram
This indicates that the sides forming the polygon meet the criteria of a Parallelogram based on the distances and checks performed.
To classify the polygon, let's understand the properties it might have:
1. Calculate distances between consecutive vertices to determine the side lengths:
- Length AB: Distance between A(-1,4) and B(3,7).
- Length BC: Distance between B(3,7) and C(7,4).
- Length CD: Distance between C(7,4) and D(3,1).
- Length DA: Distance between D(3,1) and A(-1,4).
2. Calculate lengths of the diagonals to determine if opposite angles are equal:
- Diagonal AC: Distance between A(-1,4) and C(7,4).
- Diagonal BD: Distance between B(3,7) and D(3,1).
3. Check for specific polygon properties:
- Parallelogram: Opposite sides are equal in length.
- Rectangle: Parallelogram with all angles being right angles.
- Square: Rectangle with all sides equal.
- Rhombus: Parallelogram with all sides equal, but not necessarily right angles.
Given the information:
- Lengths of sides and diagonals match criteria for the classification of a Parallelogram:
- Opposite sides AB and CD are equal.
- Opposite sides BC and DA are equal.
- The diagonals may not necessarily be equal.
Thus after carefully analyzing the vertices and determining the properties hold true to a specific classification, the most specific name for the polygon with vertices A(-1,4), B(3,7), C(7,4), and D(3,1) is:
A. Parallelogram
This indicates that the sides forming the polygon meet the criteria of a Parallelogram based on the distances and checks performed.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.