Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's evaluate \(\log_7 98\) given that \(\log_7 2 \approx 0.356\).
To begin with, we will utilize the product property of logarithms, which states that:
[tex]\[ \log_b (xy) = \log_b x + \log_b y \][/tex]
Using this property, we can rewrite \(\log_7 98\) as follows:
[tex]\[ \log_7 98 = \log_7 (2 \cdot 49) \][/tex]
Applying the product property, we get:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \][/tex]
Given: \(\log_7 2 \approx 0.356\),
so we already have:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
Now, let's evaluate \(\log_7 49\). Notice that \(49\) can be rewritten as \(7^2\):
[tex]\[ \log_7 49 = \log_7 (7^2) \][/tex]
Using the power property of logarithms, which states that \(\log_b (a^c) = c \cdot \log_b a\), we get:
[tex]\[ \log_7 (7^2) = 2 \cdot \log_7 7 \][/tex]
Knowing that \(\log_7 7 = 1\) (since the logarithm of a number to its own base is always 1), we obtain:
[tex]\[ \log_7 49 = 2 \cdot 1 = 2 \][/tex]
Now that we have both \(\log_7 2\) and \(\log_7 49\), we can sum them up:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \approx 0.356 + 2 = 2.356 \][/tex]
So the steps to evaluate \(\log_7 98\) given \(\log_7 2 \approx 0.356\) are:
1. Use the product property: \(\log_7 98 = \log_7 2 + \log_7 49\)
2. Recognize \(49 = 7^2\) and calculate \(\log_7 49 = 2\)
3. Sum the values: \(\log_7 98 \approx 0.356 + 2 = 2.356\)
Therefore, the evaluated logarithm is:
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Final results:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
[tex]\[ \log_7 49 = 2 \][/tex]
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
To begin with, we will utilize the product property of logarithms, which states that:
[tex]\[ \log_b (xy) = \log_b x + \log_b y \][/tex]
Using this property, we can rewrite \(\log_7 98\) as follows:
[tex]\[ \log_7 98 = \log_7 (2 \cdot 49) \][/tex]
Applying the product property, we get:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \][/tex]
Given: \(\log_7 2 \approx 0.356\),
so we already have:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
Now, let's evaluate \(\log_7 49\). Notice that \(49\) can be rewritten as \(7^2\):
[tex]\[ \log_7 49 = \log_7 (7^2) \][/tex]
Using the power property of logarithms, which states that \(\log_b (a^c) = c \cdot \log_b a\), we get:
[tex]\[ \log_7 (7^2) = 2 \cdot \log_7 7 \][/tex]
Knowing that \(\log_7 7 = 1\) (since the logarithm of a number to its own base is always 1), we obtain:
[tex]\[ \log_7 49 = 2 \cdot 1 = 2 \][/tex]
Now that we have both \(\log_7 2\) and \(\log_7 49\), we can sum them up:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \approx 0.356 + 2 = 2.356 \][/tex]
So the steps to evaluate \(\log_7 98\) given \(\log_7 2 \approx 0.356\) are:
1. Use the product property: \(\log_7 98 = \log_7 2 + \log_7 49\)
2. Recognize \(49 = 7^2\) and calculate \(\log_7 49 = 2\)
3. Sum the values: \(\log_7 98 \approx 0.356 + 2 = 2.356\)
Therefore, the evaluated logarithm is:
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Final results:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
[tex]\[ \log_7 49 = 2 \][/tex]
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.