Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's evaluate \(\log_7 98\) given that \(\log_7 2 \approx 0.356\).
To begin with, we will utilize the product property of logarithms, which states that:
[tex]\[ \log_b (xy) = \log_b x + \log_b y \][/tex]
Using this property, we can rewrite \(\log_7 98\) as follows:
[tex]\[ \log_7 98 = \log_7 (2 \cdot 49) \][/tex]
Applying the product property, we get:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \][/tex]
Given: \(\log_7 2 \approx 0.356\),
so we already have:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
Now, let's evaluate \(\log_7 49\). Notice that \(49\) can be rewritten as \(7^2\):
[tex]\[ \log_7 49 = \log_7 (7^2) \][/tex]
Using the power property of logarithms, which states that \(\log_b (a^c) = c \cdot \log_b a\), we get:
[tex]\[ \log_7 (7^2) = 2 \cdot \log_7 7 \][/tex]
Knowing that \(\log_7 7 = 1\) (since the logarithm of a number to its own base is always 1), we obtain:
[tex]\[ \log_7 49 = 2 \cdot 1 = 2 \][/tex]
Now that we have both \(\log_7 2\) and \(\log_7 49\), we can sum them up:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \approx 0.356 + 2 = 2.356 \][/tex]
So the steps to evaluate \(\log_7 98\) given \(\log_7 2 \approx 0.356\) are:
1. Use the product property: \(\log_7 98 = \log_7 2 + \log_7 49\)
2. Recognize \(49 = 7^2\) and calculate \(\log_7 49 = 2\)
3. Sum the values: \(\log_7 98 \approx 0.356 + 2 = 2.356\)
Therefore, the evaluated logarithm is:
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Final results:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
[tex]\[ \log_7 49 = 2 \][/tex]
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
To begin with, we will utilize the product property of logarithms, which states that:
[tex]\[ \log_b (xy) = \log_b x + \log_b y \][/tex]
Using this property, we can rewrite \(\log_7 98\) as follows:
[tex]\[ \log_7 98 = \log_7 (2 \cdot 49) \][/tex]
Applying the product property, we get:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \][/tex]
Given: \(\log_7 2 \approx 0.356\),
so we already have:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
Now, let's evaluate \(\log_7 49\). Notice that \(49\) can be rewritten as \(7^2\):
[tex]\[ \log_7 49 = \log_7 (7^2) \][/tex]
Using the power property of logarithms, which states that \(\log_b (a^c) = c \cdot \log_b a\), we get:
[tex]\[ \log_7 (7^2) = 2 \cdot \log_7 7 \][/tex]
Knowing that \(\log_7 7 = 1\) (since the logarithm of a number to its own base is always 1), we obtain:
[tex]\[ \log_7 49 = 2 \cdot 1 = 2 \][/tex]
Now that we have both \(\log_7 2\) and \(\log_7 49\), we can sum them up:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \approx 0.356 + 2 = 2.356 \][/tex]
So the steps to evaluate \(\log_7 98\) given \(\log_7 2 \approx 0.356\) are:
1. Use the product property: \(\log_7 98 = \log_7 2 + \log_7 49\)
2. Recognize \(49 = 7^2\) and calculate \(\log_7 49 = 2\)
3. Sum the values: \(\log_7 98 \approx 0.356 + 2 = 2.356\)
Therefore, the evaluated logarithm is:
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Final results:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
[tex]\[ \log_7 49 = 2 \][/tex]
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.