Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's evaluate \(\log_7 98\) given that \(\log_7 2 \approx 0.356\).
To begin with, we will utilize the product property of logarithms, which states that:
[tex]\[ \log_b (xy) = \log_b x + \log_b y \][/tex]
Using this property, we can rewrite \(\log_7 98\) as follows:
[tex]\[ \log_7 98 = \log_7 (2 \cdot 49) \][/tex]
Applying the product property, we get:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \][/tex]
Given: \(\log_7 2 \approx 0.356\),
so we already have:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
Now, let's evaluate \(\log_7 49\). Notice that \(49\) can be rewritten as \(7^2\):
[tex]\[ \log_7 49 = \log_7 (7^2) \][/tex]
Using the power property of logarithms, which states that \(\log_b (a^c) = c \cdot \log_b a\), we get:
[tex]\[ \log_7 (7^2) = 2 \cdot \log_7 7 \][/tex]
Knowing that \(\log_7 7 = 1\) (since the logarithm of a number to its own base is always 1), we obtain:
[tex]\[ \log_7 49 = 2 \cdot 1 = 2 \][/tex]
Now that we have both \(\log_7 2\) and \(\log_7 49\), we can sum them up:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \approx 0.356 + 2 = 2.356 \][/tex]
So the steps to evaluate \(\log_7 98\) given \(\log_7 2 \approx 0.356\) are:
1. Use the product property: \(\log_7 98 = \log_7 2 + \log_7 49\)
2. Recognize \(49 = 7^2\) and calculate \(\log_7 49 = 2\)
3. Sum the values: \(\log_7 98 \approx 0.356 + 2 = 2.356\)
Therefore, the evaluated logarithm is:
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Final results:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
[tex]\[ \log_7 49 = 2 \][/tex]
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
To begin with, we will utilize the product property of logarithms, which states that:
[tex]\[ \log_b (xy) = \log_b x + \log_b y \][/tex]
Using this property, we can rewrite \(\log_7 98\) as follows:
[tex]\[ \log_7 98 = \log_7 (2 \cdot 49) \][/tex]
Applying the product property, we get:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \][/tex]
Given: \(\log_7 2 \approx 0.356\),
so we already have:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
Now, let's evaluate \(\log_7 49\). Notice that \(49\) can be rewritten as \(7^2\):
[tex]\[ \log_7 49 = \log_7 (7^2) \][/tex]
Using the power property of logarithms, which states that \(\log_b (a^c) = c \cdot \log_b a\), we get:
[tex]\[ \log_7 (7^2) = 2 \cdot \log_7 7 \][/tex]
Knowing that \(\log_7 7 = 1\) (since the logarithm of a number to its own base is always 1), we obtain:
[tex]\[ \log_7 49 = 2 \cdot 1 = 2 \][/tex]
Now that we have both \(\log_7 2\) and \(\log_7 49\), we can sum them up:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \approx 0.356 + 2 = 2.356 \][/tex]
So the steps to evaluate \(\log_7 98\) given \(\log_7 2 \approx 0.356\) are:
1. Use the product property: \(\log_7 98 = \log_7 2 + \log_7 49\)
2. Recognize \(49 = 7^2\) and calculate \(\log_7 49 = 2\)
3. Sum the values: \(\log_7 98 \approx 0.356 + 2 = 2.356\)
Therefore, the evaluated logarithm is:
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Final results:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
[tex]\[ \log_7 49 = 2 \][/tex]
[tex]\[ \log_7 98 \approx 2.356 \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.