Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Complete the steps to evaluate [tex]$\log _7 98[tex]$[/tex], given [tex]$[/tex]\log _7 2 \approx 0.356$[/tex].

How can you rewrite [tex]$\log _7 98$[/tex] using the product property?

A. [tex]$7 \log 2 + 7 \log 49$[/tex]
B. [tex]$\log 7 + \log 2 + \log 49$[/tex]
C. [tex]$\log _7 2 + \log _7 49$[/tex]

Sagot :

Sure, let's evaluate \(\log_7 98\) given that \(\log_7 2 \approx 0.356\).

To begin with, we will utilize the product property of logarithms, which states that:
[tex]\[ \log_b (xy) = \log_b x + \log_b y \][/tex]

Using this property, we can rewrite \(\log_7 98\) as follows:
[tex]\[ \log_7 98 = \log_7 (2 \cdot 49) \][/tex]

Applying the product property, we get:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \][/tex]

Given: \(\log_7 2 \approx 0.356\),
so we already have:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]

Now, let's evaluate \(\log_7 49\). Notice that \(49\) can be rewritten as \(7^2\):
[tex]\[ \log_7 49 = \log_7 (7^2) \][/tex]

Using the power property of logarithms, which states that \(\log_b (a^c) = c \cdot \log_b a\), we get:
[tex]\[ \log_7 (7^2) = 2 \cdot \log_7 7 \][/tex]

Knowing that \(\log_7 7 = 1\) (since the logarithm of a number to its own base is always 1), we obtain:
[tex]\[ \log_7 49 = 2 \cdot 1 = 2 \][/tex]

Now that we have both \(\log_7 2\) and \(\log_7 49\), we can sum them up:
[tex]\[ \log_7 98 = \log_7 2 + \log_7 49 \approx 0.356 + 2 = 2.356 \][/tex]

So the steps to evaluate \(\log_7 98\) given \(\log_7 2 \approx 0.356\) are:
1. Use the product property: \(\log_7 98 = \log_7 2 + \log_7 49\)
2. Recognize \(49 = 7^2\) and calculate \(\log_7 49 = 2\)
3. Sum the values: \(\log_7 98 \approx 0.356 + 2 = 2.356\)

Therefore, the evaluated logarithm is:
[tex]\[ \log_7 98 \approx 2.356 \][/tex]

Final results:
[tex]\[ \log_7 2 \approx 0.356 \][/tex]
[tex]\[ \log_7 49 = 2 \][/tex]
[tex]\[ \log_7 98 \approx 2.356 \][/tex]