Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine in which triangle the value of \(x\) is equal to \(\cos^{-1}\left(\frac{4.3}{6.7}\right)\), follow these steps.
### Step-by-Step Solution:
1. Identify the Given Values:
- We have a triangle where the side opposite the angle \(x\) is 4.3 units.
- The hypotenuse of the triangle is 6.7 units.
2. Use the Inverse Cosine Function:
- We need to calculate the angle \(x\) using the inverse cosine (arccos) function.
- The ratio of the side opposite \(x\) to the hypotenuse is \(\frac{4.3}{6.7}\).
3. Calculate the Angle \(x\):
- \(x = \cos^{-1}\left(\frac{4.3}{6.7}\right)\).
4. Numerical Calculation:
- Using the inverse cosine function, we find
[tex]\[ x \approx 0.8739648401891128 \text{ radians}. \][/tex]
5. Convert the Angle to Degrees:
- To convert radians to degrees, multiply by \(\frac{180}{\pi}\):
[tex]\[ x \approx 0.8739648401891128 \times \frac{180}{\pi} \approx 50.07449678566164 \text{ degrees}. \][/tex]
### Interpretation of Results:
- The angle \(x\) in the triangle is approximately \(0.874\) radians or \(50.074\) degrees.
- This value of \(x\) corresponds to a triangle where the side opposite the angle \(x\) (opposite side) is 4.3 units and the hypotenuse is 6.7 units.
### Conclusion:
The triangle in question is the one where the value of [tex]\(x\)[/tex] is calculated based on [tex]\(\cos^{-1}\left(\frac{4.3}{6.7}\right)\)[/tex], resulting in an angle of approximately [tex]\(50.074\)[/tex] degrees. Therefore, in a triangle with a hypotenuse of 6.7 units and an opposite side of 4.3 units, the angle [tex]\(x\)[/tex] will be approximately [tex]\(50.074\)[/tex] degrees.
### Step-by-Step Solution:
1. Identify the Given Values:
- We have a triangle where the side opposite the angle \(x\) is 4.3 units.
- The hypotenuse of the triangle is 6.7 units.
2. Use the Inverse Cosine Function:
- We need to calculate the angle \(x\) using the inverse cosine (arccos) function.
- The ratio of the side opposite \(x\) to the hypotenuse is \(\frac{4.3}{6.7}\).
3. Calculate the Angle \(x\):
- \(x = \cos^{-1}\left(\frac{4.3}{6.7}\right)\).
4. Numerical Calculation:
- Using the inverse cosine function, we find
[tex]\[ x \approx 0.8739648401891128 \text{ radians}. \][/tex]
5. Convert the Angle to Degrees:
- To convert radians to degrees, multiply by \(\frac{180}{\pi}\):
[tex]\[ x \approx 0.8739648401891128 \times \frac{180}{\pi} \approx 50.07449678566164 \text{ degrees}. \][/tex]
### Interpretation of Results:
- The angle \(x\) in the triangle is approximately \(0.874\) radians or \(50.074\) degrees.
- This value of \(x\) corresponds to a triangle where the side opposite the angle \(x\) (opposite side) is 4.3 units and the hypotenuse is 6.7 units.
### Conclusion:
The triangle in question is the one where the value of [tex]\(x\)[/tex] is calculated based on [tex]\(\cos^{-1}\left(\frac{4.3}{6.7}\right)\)[/tex], resulting in an angle of approximately [tex]\(50.074\)[/tex] degrees. Therefore, in a triangle with a hypotenuse of 6.7 units and an opposite side of 4.3 units, the angle [tex]\(x\)[/tex] will be approximately [tex]\(50.074\)[/tex] degrees.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.