Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find \(\sin(2t)\) given \(\pi < t < \frac{3\pi}{2}\) and \(\sin(t) = -\frac{3}{4}\), we can use the double-angle formula for sine. Let's go through the steps one-by-one:
1. Identify Given Information:
- \(\sin(t) = -\frac{3}{4}\)
- The angle \(t\) is such that \(\pi < t < \frac{3\pi}{2}\) which places \(t\) in the third quadrant.
2. Calculate \(\cos(t)\):
- Use the Pythagorean identity: \(\sin^2(t) + \cos^2(t) = 1\)
- Substituting \(\sin(t)\):
[tex]\[ \left(-\frac{3}{4}\right)^2 + \cos^2(t) = 1 \][/tex]
- Simplify:
[tex]\[ \frac{9}{16} + \cos^2(t) = 1 \][/tex]
- Solve for \(\cos^2(t)\):
[tex]\[ \cos^2(t) = 1 - \frac{9}{16} \][/tex]
[tex]\[ \cos^2(t) = \frac{16}{16} - \frac{9}{16} \][/tex]
[tex]\[ \cos^2(t) = \frac{7}{16} \][/tex]
- Since \(t\) is in the third quadrant, \(\cos(t)\) is negative:
[tex]\[ \cos(t) = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \][/tex]
3. Use the Double-Angle Formula:
- The double-angle formula for sine is:
[tex]\[ \sin(2t) = 2 \sin(t) \cos(t) \][/tex]
- Substitute the values:
[tex]\[ \sin(2t) = 2 \left(-\frac{3}{4}\right) \left(-\frac{\sqrt{7}}{4}\right) \][/tex]
- Simplify:
[tex]\[ \sin(2t) = 2 \cdot \frac{3\sqrt{7}}{16} \][/tex]
[tex]\[ \sin(2t) = \frac{6\sqrt{7}}{16} \][/tex]
[tex]\[ \sin(2t) = \frac{3\sqrt{7}}{8} \][/tex]
Therefore, the exact value of \(\sin(2t)\) is:
[tex]\[ \sin(2t) = \frac{3\sqrt{7}}{8} \][/tex]
1. Identify Given Information:
- \(\sin(t) = -\frac{3}{4}\)
- The angle \(t\) is such that \(\pi < t < \frac{3\pi}{2}\) which places \(t\) in the third quadrant.
2. Calculate \(\cos(t)\):
- Use the Pythagorean identity: \(\sin^2(t) + \cos^2(t) = 1\)
- Substituting \(\sin(t)\):
[tex]\[ \left(-\frac{3}{4}\right)^2 + \cos^2(t) = 1 \][/tex]
- Simplify:
[tex]\[ \frac{9}{16} + \cos^2(t) = 1 \][/tex]
- Solve for \(\cos^2(t)\):
[tex]\[ \cos^2(t) = 1 - \frac{9}{16} \][/tex]
[tex]\[ \cos^2(t) = \frac{16}{16} - \frac{9}{16} \][/tex]
[tex]\[ \cos^2(t) = \frac{7}{16} \][/tex]
- Since \(t\) is in the third quadrant, \(\cos(t)\) is negative:
[tex]\[ \cos(t) = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4} \][/tex]
3. Use the Double-Angle Formula:
- The double-angle formula for sine is:
[tex]\[ \sin(2t) = 2 \sin(t) \cos(t) \][/tex]
- Substitute the values:
[tex]\[ \sin(2t) = 2 \left(-\frac{3}{4}\right) \left(-\frac{\sqrt{7}}{4}\right) \][/tex]
- Simplify:
[tex]\[ \sin(2t) = 2 \cdot \frac{3\sqrt{7}}{16} \][/tex]
[tex]\[ \sin(2t) = \frac{6\sqrt{7}}{16} \][/tex]
[tex]\[ \sin(2t) = \frac{3\sqrt{7}}{8} \][/tex]
Therefore, the exact value of \(\sin(2t)\) is:
[tex]\[ \sin(2t) = \frac{3\sqrt{7}}{8} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.