Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Use a double-angle formula to make the required calculation.

Given:
[tex] \pi \ \textless \ t \ \textless \ \frac{3 \pi}{2}, \tan (t) = 7 [/tex]

Find [tex] \tan (2t) [/tex].

(Give an exact answer. Use symbolic notation and fractions where needed.)

[tex] \tan (2t) = \qquad \]


Sagot :

Sure, let's find \(\tan(2t)\) using the double-angle formula for tangent. Given:

[tex]\[ \pi < t < \frac{3\pi}{2} \quad \text{and} \quad \tan(t) = 7 \][/tex]

We want to find \(\tan(2t)\). The double-angle formula for tangent is:

[tex]\[ \tan(2t) = \frac{2 \tan(t)}{1 - \tan^2(t)} \][/tex]

Substitute \(\tan(t) = 7\) into the formula:

[tex]\[ \tan(2t) = \frac{2 \cdot 7}{1 - 7^2} \][/tex]

Calculate the expressions in the numerator and the denominator:

[tex]\[ \tan(2t) = \frac{14}{1 - 49} \][/tex]

Simplify the denominator:

[tex]\[ \tan(2t) = \frac{14}{-48} \][/tex]

Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2:

[tex]\[ \tan(2t) = \frac{14 \div 2}{-48 \div 2} = \frac{7}{-24} \][/tex]

Thus, the exact value is:

[tex]\[ \tan(2t) = -\frac{7}{24} \][/tex]