Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's find \(\tan(2t)\) using the double-angle formula for tangent. Given:
[tex]\[ \pi < t < \frac{3\pi}{2} \quad \text{and} \quad \tan(t) = 7 \][/tex]
We want to find \(\tan(2t)\). The double-angle formula for tangent is:
[tex]\[ \tan(2t) = \frac{2 \tan(t)}{1 - \tan^2(t)} \][/tex]
Substitute \(\tan(t) = 7\) into the formula:
[tex]\[ \tan(2t) = \frac{2 \cdot 7}{1 - 7^2} \][/tex]
Calculate the expressions in the numerator and the denominator:
[tex]\[ \tan(2t) = \frac{14}{1 - 49} \][/tex]
Simplify the denominator:
[tex]\[ \tan(2t) = \frac{14}{-48} \][/tex]
Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \tan(2t) = \frac{14 \div 2}{-48 \div 2} = \frac{7}{-24} \][/tex]
Thus, the exact value is:
[tex]\[ \tan(2t) = -\frac{7}{24} \][/tex]
[tex]\[ \pi < t < \frac{3\pi}{2} \quad \text{and} \quad \tan(t) = 7 \][/tex]
We want to find \(\tan(2t)\). The double-angle formula for tangent is:
[tex]\[ \tan(2t) = \frac{2 \tan(t)}{1 - \tan^2(t)} \][/tex]
Substitute \(\tan(t) = 7\) into the formula:
[tex]\[ \tan(2t) = \frac{2 \cdot 7}{1 - 7^2} \][/tex]
Calculate the expressions in the numerator and the denominator:
[tex]\[ \tan(2t) = \frac{14}{1 - 49} \][/tex]
Simplify the denominator:
[tex]\[ \tan(2t) = \frac{14}{-48} \][/tex]
Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \tan(2t) = \frac{14 \div 2}{-48 \div 2} = \frac{7}{-24} \][/tex]
Thus, the exact value is:
[tex]\[ \tan(2t) = -\frac{7}{24} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.