At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's find \(\tan(2t)\) using the double-angle formula for tangent. Given:
[tex]\[ \pi < t < \frac{3\pi}{2} \quad \text{and} \quad \tan(t) = 7 \][/tex]
We want to find \(\tan(2t)\). The double-angle formula for tangent is:
[tex]\[ \tan(2t) = \frac{2 \tan(t)}{1 - \tan^2(t)} \][/tex]
Substitute \(\tan(t) = 7\) into the formula:
[tex]\[ \tan(2t) = \frac{2 \cdot 7}{1 - 7^2} \][/tex]
Calculate the expressions in the numerator and the denominator:
[tex]\[ \tan(2t) = \frac{14}{1 - 49} \][/tex]
Simplify the denominator:
[tex]\[ \tan(2t) = \frac{14}{-48} \][/tex]
Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \tan(2t) = \frac{14 \div 2}{-48 \div 2} = \frac{7}{-24} \][/tex]
Thus, the exact value is:
[tex]\[ \tan(2t) = -\frac{7}{24} \][/tex]
[tex]\[ \pi < t < \frac{3\pi}{2} \quad \text{and} \quad \tan(t) = 7 \][/tex]
We want to find \(\tan(2t)\). The double-angle formula for tangent is:
[tex]\[ \tan(2t) = \frac{2 \tan(t)}{1 - \tan^2(t)} \][/tex]
Substitute \(\tan(t) = 7\) into the formula:
[tex]\[ \tan(2t) = \frac{2 \cdot 7}{1 - 7^2} \][/tex]
Calculate the expressions in the numerator and the denominator:
[tex]\[ \tan(2t) = \frac{14}{1 - 49} \][/tex]
Simplify the denominator:
[tex]\[ \tan(2t) = \frac{14}{-48} \][/tex]
Simplify the fraction by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \tan(2t) = \frac{14 \div 2}{-48 \div 2} = \frac{7}{-24} \][/tex]
Thus, the exact value is:
[tex]\[ \tan(2t) = -\frac{7}{24} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.