Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the inverse of the function \( f(x) = \frac{1}{3} - \frac{1}{21} x \), we need to follow these steps:
1. Rewrite the function: Begin with the equation that defines \( f(x) \):
[tex]\[ y = \frac{1}{3} - \frac{1}{21} x \][/tex]
2. Swap \(x\) and \(y\): Interchange the roles of \(x\) and \(y\) because we are now solving for the inverse function:
[tex]\[ x = \frac{1}{3} - \frac{1}{21} y \][/tex]
3. Solve for \(y\): Isolate \(y\) to express it in terms of \(x\). Start by moving the constant on the right-hand side:
[tex]\[ x - \frac{1}{3} = - \frac{1}{21} y \][/tex]
[tex]\[ - \frac{1}{21} y = x - \frac{1}{3} \][/tex]
Now, multiply both sides by \(-21\) to solve for \(y\):
[tex]\[ y = -21 (x - \frac{1}{3}) \][/tex]
4. Simplify the expression for \(y\): Distribute the \(-21\):
[tex]\[ y = -21x + 7 \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = 7 - 21x \][/tex]
5. Compare with the given choices: Let's identify if this matches any of the provided options:
A. \(f^{-1}(x) = 7 - 21x\)
B. \(f^{-1}(x) = \frac{1}{7} - \frac{1}{21} x\)
C. \(f^{-1}(x) = \frac{1}{7} - 21x\)
D. \(f^{-1}(x) = 7 - \frac{1}{21} x\)
Clearly, the correct answer is:
[tex]\[ \boxed{A. \; f^{-1}(x) = 7 - 21x} \][/tex]
1. Rewrite the function: Begin with the equation that defines \( f(x) \):
[tex]\[ y = \frac{1}{3} - \frac{1}{21} x \][/tex]
2. Swap \(x\) and \(y\): Interchange the roles of \(x\) and \(y\) because we are now solving for the inverse function:
[tex]\[ x = \frac{1}{3} - \frac{1}{21} y \][/tex]
3. Solve for \(y\): Isolate \(y\) to express it in terms of \(x\). Start by moving the constant on the right-hand side:
[tex]\[ x - \frac{1}{3} = - \frac{1}{21} y \][/tex]
[tex]\[ - \frac{1}{21} y = x - \frac{1}{3} \][/tex]
Now, multiply both sides by \(-21\) to solve for \(y\):
[tex]\[ y = -21 (x - \frac{1}{3}) \][/tex]
4. Simplify the expression for \(y\): Distribute the \(-21\):
[tex]\[ y = -21x + 7 \][/tex]
So, the inverse function is:
[tex]\[ f^{-1}(x) = 7 - 21x \][/tex]
5. Compare with the given choices: Let's identify if this matches any of the provided options:
A. \(f^{-1}(x) = 7 - 21x\)
B. \(f^{-1}(x) = \frac{1}{7} - \frac{1}{21} x\)
C. \(f^{-1}(x) = \frac{1}{7} - 21x\)
D. \(f^{-1}(x) = 7 - \frac{1}{21} x\)
Clearly, the correct answer is:
[tex]\[ \boxed{A. \; f^{-1}(x) = 7 - 21x} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.