Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the problem of adding the rational expressions \(\frac{3x + 6}{24}\) and \(\frac{2x - 1}{8}\), follow these steps:
1. Identify the least common denominator (LCD):
- The denominators of the given fractions are 24 and 8.
- The least common denominator of 24 and 8 is 24.
2. Rewrite each fraction with the common denominator:
- The fraction \(\frac{3x + 6}{24}\) already has 24 as the denominator.
- To rewrite \(\frac{2x - 1}{8}\) with 24 as the denominator, express it in terms of 24:
[tex]\[ \frac{2x - 1}{8} = \frac{2x - 1}{8} \times \frac{3}{3} = \frac{3(2x - 1)}{24} = \frac{6x - 3}{24} \][/tex]
3. Add the fractions:
- Now, add the two fractions:
[tex]\[ \frac{3x + 6}{24} + \frac{6x - 3}{24} = \frac{(3x + 6) + (6x - 3)}{24} = \frac{3x + 6 + 6x - 3}{24} = \frac{9x + 3}{24} \][/tex]
4. Simplify the result:
- Simplify the numerator if possible:
[tex]\[ \frac{9x + 3}{24} = \frac{3(3x + 1)}{24} \][/tex]
- Recognize that the greatest common divisor (GCD) of 3 and 24 is 3, so we divide both the numerator and the denominator by 3:
[tex]\[ \frac{3(3x + 1)}{24} = \frac{3x + 1}{8} \][/tex]
Therefore, the simplified form of the sum [tex]\(\frac{3x + 6}{24} + \frac{2x - 1}{8}\)[/tex] is [tex]\(\boxed{\frac{3x + 1}{8}}\)[/tex].
1. Identify the least common denominator (LCD):
- The denominators of the given fractions are 24 and 8.
- The least common denominator of 24 and 8 is 24.
2. Rewrite each fraction with the common denominator:
- The fraction \(\frac{3x + 6}{24}\) already has 24 as the denominator.
- To rewrite \(\frac{2x - 1}{8}\) with 24 as the denominator, express it in terms of 24:
[tex]\[ \frac{2x - 1}{8} = \frac{2x - 1}{8} \times \frac{3}{3} = \frac{3(2x - 1)}{24} = \frac{6x - 3}{24} \][/tex]
3. Add the fractions:
- Now, add the two fractions:
[tex]\[ \frac{3x + 6}{24} + \frac{6x - 3}{24} = \frac{(3x + 6) + (6x - 3)}{24} = \frac{3x + 6 + 6x - 3}{24} = \frac{9x + 3}{24} \][/tex]
4. Simplify the result:
- Simplify the numerator if possible:
[tex]\[ \frac{9x + 3}{24} = \frac{3(3x + 1)}{24} \][/tex]
- Recognize that the greatest common divisor (GCD) of 3 and 24 is 3, so we divide both the numerator and the denominator by 3:
[tex]\[ \frac{3(3x + 1)}{24} = \frac{3x + 1}{8} \][/tex]
Therefore, the simplified form of the sum [tex]\(\frac{3x + 6}{24} + \frac{2x - 1}{8}\)[/tex] is [tex]\(\boxed{\frac{3x + 1}{8}}\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.