Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the length of a 180° arc in a circle with a diameter of 16 feet, follow these steps:
1. Find the radius of the circle:
The radius \( r \) is half of the diameter \( d \).
[tex]\[ r = \frac{d}{2} = \frac{16 \text{ feet}}{2} = 8 \text{ feet} \][/tex]
2. Calculate the circumference of the circle:
The circumference \( C \) of a circle is given by the formula:
[tex]\[ C = \pi \times d \][/tex]
Substituting the given diameter:
[tex]\[ C = \pi \times 16 \text{ feet} \][/tex]
3. Determine the proportion of the circumference for the 180° arc:
Since 180° is exactly half of a full circle (which is 360°), the 180° arc is half of the circumference of the circle. The length of the arc \( L \) can be found using the proportion of the angle to the full circle:
[tex]\[ L = \left(\frac{180^\circ}{360^\circ}\right) \times C = \left(\frac{1}{2}\right) \times \pi \times 16 \text{ feet} \][/tex]
Simplifying this:
[tex]\[ L = \frac{1}{2} \times 16\pi \text{ feet} = 8\pi \text{ feet} \][/tex]
Therefore, the exact length of the 180° arc in simplest form is:
[tex]\[ 8\pi \text{ feet} \][/tex]
1. Find the radius of the circle:
The radius \( r \) is half of the diameter \( d \).
[tex]\[ r = \frac{d}{2} = \frac{16 \text{ feet}}{2} = 8 \text{ feet} \][/tex]
2. Calculate the circumference of the circle:
The circumference \( C \) of a circle is given by the formula:
[tex]\[ C = \pi \times d \][/tex]
Substituting the given diameter:
[tex]\[ C = \pi \times 16 \text{ feet} \][/tex]
3. Determine the proportion of the circumference for the 180° arc:
Since 180° is exactly half of a full circle (which is 360°), the 180° arc is half of the circumference of the circle. The length of the arc \( L \) can be found using the proportion of the angle to the full circle:
[tex]\[ L = \left(\frac{180^\circ}{360^\circ}\right) \times C = \left(\frac{1}{2}\right) \times \pi \times 16 \text{ feet} \][/tex]
Simplifying this:
[tex]\[ L = \frac{1}{2} \times 16\pi \text{ feet} = 8\pi \text{ feet} \][/tex]
Therefore, the exact length of the 180° arc in simplest form is:
[tex]\[ 8\pi \text{ feet} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.