Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the length of a 180° arc in a circle with a diameter of 16 feet, follow these steps:
1. Find the radius of the circle:
The radius \( r \) is half of the diameter \( d \).
[tex]\[ r = \frac{d}{2} = \frac{16 \text{ feet}}{2} = 8 \text{ feet} \][/tex]
2. Calculate the circumference of the circle:
The circumference \( C \) of a circle is given by the formula:
[tex]\[ C = \pi \times d \][/tex]
Substituting the given diameter:
[tex]\[ C = \pi \times 16 \text{ feet} \][/tex]
3. Determine the proportion of the circumference for the 180° arc:
Since 180° is exactly half of a full circle (which is 360°), the 180° arc is half of the circumference of the circle. The length of the arc \( L \) can be found using the proportion of the angle to the full circle:
[tex]\[ L = \left(\frac{180^\circ}{360^\circ}\right) \times C = \left(\frac{1}{2}\right) \times \pi \times 16 \text{ feet} \][/tex]
Simplifying this:
[tex]\[ L = \frac{1}{2} \times 16\pi \text{ feet} = 8\pi \text{ feet} \][/tex]
Therefore, the exact length of the 180° arc in simplest form is:
[tex]\[ 8\pi \text{ feet} \][/tex]
1. Find the radius of the circle:
The radius \( r \) is half of the diameter \( d \).
[tex]\[ r = \frac{d}{2} = \frac{16 \text{ feet}}{2} = 8 \text{ feet} \][/tex]
2. Calculate the circumference of the circle:
The circumference \( C \) of a circle is given by the formula:
[tex]\[ C = \pi \times d \][/tex]
Substituting the given diameter:
[tex]\[ C = \pi \times 16 \text{ feet} \][/tex]
3. Determine the proportion of the circumference for the 180° arc:
Since 180° is exactly half of a full circle (which is 360°), the 180° arc is half of the circumference of the circle. The length of the arc \( L \) can be found using the proportion of the angle to the full circle:
[tex]\[ L = \left(\frac{180^\circ}{360^\circ}\right) \times C = \left(\frac{1}{2}\right) \times \pi \times 16 \text{ feet} \][/tex]
Simplifying this:
[tex]\[ L = \frac{1}{2} \times 16\pi \text{ feet} = 8\pi \text{ feet} \][/tex]
Therefore, the exact length of the 180° arc in simplest form is:
[tex]\[ 8\pi \text{ feet} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.