Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's walk through the steps to find the probability that a randomly selected male college student gains between \(0 \text{ kg}\) and \(3 \text{ kg}\) during his freshman year, given that the weight gain is normally distributed with a mean \(\mu = 1.3 \text{ kg}\) and a standard deviation \(\sigma = 5.3 \text{ kg}\).
1. Identify the parameters:
- Mean (\(\mu\)): \(1.3 \text{ kg}\)
- Standard deviation (\(\sigma\)): \(5.3 \text{ kg}\)
- Lower bound of weight gain: \(0 \text{ kg}\)
- Upper bound of weight gain: \(3 \text{ kg}\)
2. Calculate the z-scores for the lower and upper bounds:
The \(z\)-score is calculated as:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
- For the lower bound \(0 \text{ kg}\):
[tex]\[ z_{\text{lower}} = \frac{0 - 1.3}{5.3} \approx -0.245283 \][/tex]
- For the upper bound \(3 \text{ kg}\):
[tex]\[ z_{\text{upper}} = \frac{3 - 1.3}{5.3} \approx 0.320755 \][/tex]
3. Use the cumulative distribution function (CDF) of the standard normal distribution to find the probabilities corresponding to these z-scores:
- The probability corresponding to \(z_{\text{lower}} \approx -0.245283\) is:
[tex]\[ P(Z \leq -0.245283) \][/tex]
- The probability corresponding to \(z_{\text{upper}} \approx 0.320755\) is:
[tex]\[ P(Z \leq 0.320755) \][/tex]
4. Calculate the probability that the weight gain is between \(0 \text{ kg}\) and \(3 \text{ kg}\):
The probability is found by taking the difference between the probabilities for the upper bound and lower bound:
[tex]\[ P(0 \leq X \leq 3) = P(Z \leq 0.320755) - P(Z \leq -0.245283) \approx 0.222683 \][/tex]
So, the probability that a randomly selected male college student gains between [tex]\(0 \text{ kg}\)[/tex] and [tex]\(3 \text{ kg}\)[/tex] during his freshman year is approximately [tex]\(0.2227\)[/tex].
1. Identify the parameters:
- Mean (\(\mu\)): \(1.3 \text{ kg}\)
- Standard deviation (\(\sigma\)): \(5.3 \text{ kg}\)
- Lower bound of weight gain: \(0 \text{ kg}\)
- Upper bound of weight gain: \(3 \text{ kg}\)
2. Calculate the z-scores for the lower and upper bounds:
The \(z\)-score is calculated as:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
- For the lower bound \(0 \text{ kg}\):
[tex]\[ z_{\text{lower}} = \frac{0 - 1.3}{5.3} \approx -0.245283 \][/tex]
- For the upper bound \(3 \text{ kg}\):
[tex]\[ z_{\text{upper}} = \frac{3 - 1.3}{5.3} \approx 0.320755 \][/tex]
3. Use the cumulative distribution function (CDF) of the standard normal distribution to find the probabilities corresponding to these z-scores:
- The probability corresponding to \(z_{\text{lower}} \approx -0.245283\) is:
[tex]\[ P(Z \leq -0.245283) \][/tex]
- The probability corresponding to \(z_{\text{upper}} \approx 0.320755\) is:
[tex]\[ P(Z \leq 0.320755) \][/tex]
4. Calculate the probability that the weight gain is between \(0 \text{ kg}\) and \(3 \text{ kg}\):
The probability is found by taking the difference between the probabilities for the upper bound and lower bound:
[tex]\[ P(0 \leq X \leq 3) = P(Z \leq 0.320755) - P(Z \leq -0.245283) \approx 0.222683 \][/tex]
So, the probability that a randomly selected male college student gains between [tex]\(0 \text{ kg}\)[/tex] and [tex]\(3 \text{ kg}\)[/tex] during his freshman year is approximately [tex]\(0.2227\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.