At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the final balanced equation for the given redox reaction, we need to follow a step-by-step approach to balance both the atoms and the charges.
### Step 1: Write the Half-Reactions
The given redox reaction can be split into two half-reactions:
1. The oxidation half-reaction for chlorine:
[tex]\[ 2 Cl^{-}(aq) \longrightarrow Cl_2(g) + 2 e^- \][/tex]
2. The reduction half-reaction for chromium:
[tex]\[ Cr^{3+}(aq) + 3 e^- \longrightarrow Cr(s) \][/tex]
### Step 2: Balance the Electrons
To ensure electron balance between the oxidation and reduction half-reactions, we need to match the number of electrons lost and gained in both processes. In the oxidation half-reaction, 2 electrons are released, and in the reduction half-reaction, 3 electrons are gained. To balance the electrons, the common multiple of 2 and 3 is 6. Thus:
- Multiply the chlorine oxidation half-reaction by 3:
[tex]\[ 3(2 Cl^{-}(aq) \longrightarrow Cl_2(g) + 2 e^-) \Rightarrow 6 Cl^{-}(aq) \longrightarrow 3 Cl_2(g) + 6 e^- \][/tex]
- Multiply the chromium reduction half-reaction by 2:
[tex]\[ 2(Cr^{3+}(aq) + 3 e^- \longrightarrow Cr(s)) \Rightarrow 2 Cr^{3+}(aq) + 6 e^- \longrightarrow 2 Cr(s) \][/tex]
### Step 3: Combine the Half-Reactions
Now, we combine the two balanced half-reactions, ensuring to cancel out the electrons:
[tex]\[ 6 Cl^{-}(aq) \longrightarrow 3 Cl_2(g) + 6 e^- \][/tex]
[tex]\[ 2 Cr^{3+}(aq) + 6 e^- \longrightarrow 2 Cr(s) \][/tex]
When combined:
[tex]\[ 6 Cl^{-}(aq) + 2 Cr^{3+}(aq) \longrightarrow 3 Cl_2(g) + 2 Cr(s) \][/tex]
### Step 4: Write the Balanced Equation
The final balanced redox reaction equation becomes:
[tex]\[ 2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g) \][/tex]
So, the correct balanced equation for the given redox reaction is:
[tex]\[ 2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g) \][/tex]
This confirms that among the provided options, the first one is the correct balanced equation:
[tex]\[2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g)\][/tex]
### Step 1: Write the Half-Reactions
The given redox reaction can be split into two half-reactions:
1. The oxidation half-reaction for chlorine:
[tex]\[ 2 Cl^{-}(aq) \longrightarrow Cl_2(g) + 2 e^- \][/tex]
2. The reduction half-reaction for chromium:
[tex]\[ Cr^{3+}(aq) + 3 e^- \longrightarrow Cr(s) \][/tex]
### Step 2: Balance the Electrons
To ensure electron balance between the oxidation and reduction half-reactions, we need to match the number of electrons lost and gained in both processes. In the oxidation half-reaction, 2 electrons are released, and in the reduction half-reaction, 3 electrons are gained. To balance the electrons, the common multiple of 2 and 3 is 6. Thus:
- Multiply the chlorine oxidation half-reaction by 3:
[tex]\[ 3(2 Cl^{-}(aq) \longrightarrow Cl_2(g) + 2 e^-) \Rightarrow 6 Cl^{-}(aq) \longrightarrow 3 Cl_2(g) + 6 e^- \][/tex]
- Multiply the chromium reduction half-reaction by 2:
[tex]\[ 2(Cr^{3+}(aq) + 3 e^- \longrightarrow Cr(s)) \Rightarrow 2 Cr^{3+}(aq) + 6 e^- \longrightarrow 2 Cr(s) \][/tex]
### Step 3: Combine the Half-Reactions
Now, we combine the two balanced half-reactions, ensuring to cancel out the electrons:
[tex]\[ 6 Cl^{-}(aq) \longrightarrow 3 Cl_2(g) + 6 e^- \][/tex]
[tex]\[ 2 Cr^{3+}(aq) + 6 e^- \longrightarrow 2 Cr(s) \][/tex]
When combined:
[tex]\[ 6 Cl^{-}(aq) + 2 Cr^{3+}(aq) \longrightarrow 3 Cl_2(g) + 2 Cr(s) \][/tex]
### Step 4: Write the Balanced Equation
The final balanced redox reaction equation becomes:
[tex]\[ 2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g) \][/tex]
So, the correct balanced equation for the given redox reaction is:
[tex]\[ 2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g) \][/tex]
This confirms that among the provided options, the first one is the correct balanced equation:
[tex]\[2 Cr^{3+}(aq) + 6 Cl^{-}(aq) \longrightarrow 2 Cr(s) + 3 Cl_2(g)\][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.