Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Use logarithmic differentiation to find the derivative of the function.

[tex]y = x^{8x}[/tex]

[tex]y'(x) = \square[/tex]


Sagot :

Certainly! Let's find the derivative of the function \( y = x^{8x} \) using logarithmic differentiation.

Step 1: Take the natural logarithm of both sides.

We begin by taking the natural logarithm (\(\ln\)) of both sides of the equation:

[tex]\[ \ln(y) = \ln(x^{8x}) \][/tex]

Step 2: Simplify the right-hand side.

Using properties of logarithms, \(\ln(a^b) = b \cdot \ln(a)\), we can simplify the right-hand side of our equation:

[tex]\[ \ln(y) = 8x \cdot \ln(x) \][/tex]

Step 3: Differentiate both sides with respect to \( x \).

Now we will differentiate both sides of the equation with respect to \( x \). Remember that \(\ln(y)\) on the left side requires us to use the chain rule:

[tex]\[ \frac{d}{dx}[\ln(y)] = \frac{d}{dx}[8x \cdot \ln(x)] \][/tex]

The derivative of \(\ln(y)\) with respect to \( x \) is \(\frac{1}{y} \cdot \frac{dy}{dx}\). The derivative of \( 8x \cdot \ln(x) \) requires the product rule. So we get:

[tex]\[ \frac{1}{y} \cdot \frac{dy}{dx} = 8 \cdot \ln(x) + 8 \][/tex]

Step 4: Solve for \(\frac{dy}{dx}\).

Now we multiply both sides by \( y \) to isolate \(\frac{dy}{dx}\):

[tex]\[ \frac{dy}{dx} = y \cdot (8 \cdot \ln(x) + 8) \][/tex]

Step 5: Substitute back the original function \( y = x^{8x} \).

We know that \( y = x^{8x} \). Substituting this back in for \( y \):

[tex]\[ \frac{dy}{dx} = x^{8x} \cdot (8 \cdot \ln(x) + 8) \][/tex]

So, the derivative of the function \( y = x^{8x} \) is:

[tex]\[ y^{\prime}(x) = 8x^{8x} \left( \ln(x) + 1 \right) \][/tex]

This is the final result for the derivative of the given function.