Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's go through the process of performing synthetic division step-by-step to divide \(5x^2 + 6x - 16\) by \(x + 4\).
Step 1: Identify the coefficients
The polynomial \(5x^2 + 6x - 16\) has coefficients \(5\), \(6\), and \(-16\).
The divisor \(x + 4\) can be rewritten in the form \(x - (-4)\). So, the root we use for synthetic division is \(-4\).
Step 2: Set up the synthetic division
Write the coefficients of the dividend in a row:
[tex]\[ 5, 6, -16 \][/tex]
Write the root used for synthetic division to the left:
[tex]\[ -4 \][/tex]
Step 3: Perform synthetic division
1. Bring down the first coefficient (5) directly below the line:
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & & \\ \hline & 5 & & \\ \end{array} \][/tex]
2. Multiply the root (-4) by the value just written (5), and write the result under the next coefficient:
[tex]\[ -4 \times 5 = -20 \][/tex]
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & -20 & \\ \hline & 5 & -14 & \\ \end{array} \][/tex]
3. Add this result to the next coefficient (6):
[tex]\[ 6 + (-20) = -14 \][/tex]
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & -20 & 56 \\ \hline & 5 & -14 & 40 \\ \end{array} \][/tex]
4. Multiply the root (-4) by the current value (-14) and write the result under the next coefficient:
[tex]\[ -4 \times -14 = 56 \][/tex]
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & -20 & 56 \\ \hline & 5 & -14 & 40 \\ \end{array} \][/tex]
5. Add this result to the next coefficient (-16):
[tex]\[ -16 + 56 = 40 \][/tex]
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & -20 & 56 \\ \hline & 5 & -14 & 40 \\ \end{array} \][/tex]
Step 4: Interpret the results
The final row represents the coefficients of the quotient and the remainder.
- The quotient is formed by the first two numbers: \(5x - 14\).
- The remainder is the last number: \(40\).
Step 5: Write the final answer
The division of \(5x^2 + 6x - 16\) by \(x + 4\) gives:
[tex]\[ 5x^2 + 6x - 16 \div (x + 4) = 5x - 14 \text{ with a remainder of } 40 \][/tex]
So, the final answer simplifies to:
[tex]\[ 5x^2 + 6x - 16 = (x + 4)(5x - 14) + 40 \][/tex]
Step 1: Identify the coefficients
The polynomial \(5x^2 + 6x - 16\) has coefficients \(5\), \(6\), and \(-16\).
The divisor \(x + 4\) can be rewritten in the form \(x - (-4)\). So, the root we use for synthetic division is \(-4\).
Step 2: Set up the synthetic division
Write the coefficients of the dividend in a row:
[tex]\[ 5, 6, -16 \][/tex]
Write the root used for synthetic division to the left:
[tex]\[ -4 \][/tex]
Step 3: Perform synthetic division
1. Bring down the first coefficient (5) directly below the line:
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & & \\ \hline & 5 & & \\ \end{array} \][/tex]
2. Multiply the root (-4) by the value just written (5), and write the result under the next coefficient:
[tex]\[ -4 \times 5 = -20 \][/tex]
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & -20 & \\ \hline & 5 & -14 & \\ \end{array} \][/tex]
3. Add this result to the next coefficient (6):
[tex]\[ 6 + (-20) = -14 \][/tex]
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & -20 & 56 \\ \hline & 5 & -14 & 40 \\ \end{array} \][/tex]
4. Multiply the root (-4) by the current value (-14) and write the result under the next coefficient:
[tex]\[ -4 \times -14 = 56 \][/tex]
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & -20 & 56 \\ \hline & 5 & -14 & 40 \\ \end{array} \][/tex]
5. Add this result to the next coefficient (-16):
[tex]\[ -16 + 56 = 40 \][/tex]
[tex]\[ \begin{array}{r|rrr} -4 & 5 & 6 & -16 \\ & & -20 & 56 \\ \hline & 5 & -14 & 40 \\ \end{array} \][/tex]
Step 4: Interpret the results
The final row represents the coefficients of the quotient and the remainder.
- The quotient is formed by the first two numbers: \(5x - 14\).
- The remainder is the last number: \(40\).
Step 5: Write the final answer
The division of \(5x^2 + 6x - 16\) by \(x + 4\) gives:
[tex]\[ 5x^2 + 6x - 16 \div (x + 4) = 5x - 14 \text{ with a remainder of } 40 \][/tex]
So, the final answer simplifies to:
[tex]\[ 5x^2 + 6x - 16 = (x + 4)(5x - 14) + 40 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.