Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Find the average rate of change of [tex]$h(x) = -2x^3 + 5x^2[tex]$[/tex] from [tex]$[/tex]x = -3[tex]$[/tex] to [tex]$[/tex]x = 2$[/tex].

Simplify your answer as much as possible.

[tex]\square[/tex]


Sagot :

To find the average rate of change of the function \( h(x) = -2x^3 + 5x^2 \) from \( x = -3 \) to \( x = 2 \), we need to follow these steps:

1. Calculate \( h(x) \) at \( x = -3 \):
[tex]\[ h(-3) = -2(-3)^3 + 5(-3)^2 \][/tex]
Let's break it down:
[tex]\[ (-3)^3 = -27 \][/tex]
[tex]\[ -2 \times -27 = 54 \][/tex]
[tex]\[ (-3)^2 = 9 \][/tex]
[tex]\[ 5 \times 9 = 45 \][/tex]
Then,
[tex]\[ h(-3) = 54 + 45 = 99 \][/tex]

2. Calculate \( h(x) \) at \( x = 2 \):
[tex]\[ h(2) = -2(2)^3 + 5(2)^2 \][/tex]
Let's break it down:
[tex]\[ (2)^3 = 8 \][/tex]
[tex]\[ -2 \times 8 = -16 \][/tex]
[tex]\[ (2)^2 = 4 \][/tex]
[tex]\[ 5 \times 4 = 20 \][/tex]
Then,
[tex]\[ h(2) = -16 + 20 = 4 \][/tex]

3. Calculate the average rate of change:
The average rate of change of a function \( h(x) \) over the interval \([x_1, x_2]\) is given by:
[tex]\[ \frac{h(x_2) - h(x_1)}{x_2 - x_1} \][/tex]
Here, \( x_1 = -3 \) and \( x_2 = 2 \).
Substituting the values we calculated:
[tex]\[ \text{Average rate of change} = \frac{h(2) - h(-3)}{2 - (-3)} \][/tex]
Let's substitute \( h(2) = 4 \) and \( h(-3) = 99 \):
[tex]\[ \frac{4 - 99}{2 - (-3)} = \frac{4 - 99}{2 + 3} = \frac{-95}{5} = -19 \][/tex]

Therefore, the average rate of change of [tex]\( h(x) = -2x^3 + 5x^2 \)[/tex] from [tex]\( x = -3 \)[/tex] to [tex]\( x = 2 \)[/tex] is [tex]\(\boxed{-19}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.