Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the 8th term in the given geometric sequence, we start by identifying the necessary components of the sequence formula:
The explicit formula for a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
where:
- \( a_n \) is the n-th term we want to find,
- \( a_1 \) is the first term of the sequence,
- \( r \) is the common ratio,
- \( n \) is the term number.
From the given formula \( a_n = 6 \cdot 3^{(n-1)} \), we can see:
- The first term, \( a_1 \), is 6.
- The common ratio, \( r \), is 3.
- We need to find the 8th term, so \( n = 8 \).
Next, we substitute the given values into the formula:
[tex]\[ a_8 = 6 \cdot 3^{(8-1)} \][/tex]
Simplify the exponent:
[tex]\[ 8-1 = 7 \][/tex]
So the expression becomes:
[tex]\[ a_8 = 6 \cdot 3^7 \][/tex]
Now, calculate \( 3^7 \):
[tex]\[ 3^7 = 2187 \][/tex]
Finally, multiply this result by the first term:
[tex]\[ a_8 = 6 \cdot 2187 = 13122 \][/tex]
Thus, the 8th term in the geometric sequence is:
[tex]\[ a_8 = 13122 \][/tex]
The explicit formula for a geometric sequence is given by:
[tex]\[ a_n = a_1 \cdot r^{(n-1)} \][/tex]
where:
- \( a_n \) is the n-th term we want to find,
- \( a_1 \) is the first term of the sequence,
- \( r \) is the common ratio,
- \( n \) is the term number.
From the given formula \( a_n = 6 \cdot 3^{(n-1)} \), we can see:
- The first term, \( a_1 \), is 6.
- The common ratio, \( r \), is 3.
- We need to find the 8th term, so \( n = 8 \).
Next, we substitute the given values into the formula:
[tex]\[ a_8 = 6 \cdot 3^{(8-1)} \][/tex]
Simplify the exponent:
[tex]\[ 8-1 = 7 \][/tex]
So the expression becomes:
[tex]\[ a_8 = 6 \cdot 3^7 \][/tex]
Now, calculate \( 3^7 \):
[tex]\[ 3^7 = 2187 \][/tex]
Finally, multiply this result by the first term:
[tex]\[ a_8 = 6 \cdot 2187 = 13122 \][/tex]
Thus, the 8th term in the geometric sequence is:
[tex]\[ a_8 = 13122 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.