Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the enthalpy change for the reaction \(\Delta H_{rxn}\), we use the enthalpies of formation (\(\Delta H_f\)) of the reactants and products involved in the chemical reaction. The enthalpy change for the reaction can be calculated using the formula:
[tex]\[ \Delta H_{rxn} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
Given:
- \(\Delta H_f \text{ (NH}_3\text{(g))} = -46.19 \, \text{kJ/mol}\)
- \(\Delta H_f \text{ (HCl(g))} = -92.30 \, \text{kJ/mol}\)
- \(\Delta H_f \text{ (NH}_4\text{Cl(s))} = -314.4 \, \text{kJ/mol}\)
In the given reaction:
[tex]\[ NH_3(g) + HCl(g) \rightarrow NH_4Cl(s) \][/tex]
First, identify the products and reactants:
- Reactants: \(NH_3(g)\) and \(HCl(g)\)
- Product: \(NH_4Cl(s)\)
Next, sum the enthalpies of formation for the products and reactants:
- For the product \(NH_4Cl(s)\):
[tex]\[ \sum \Delta H_f(\text{products}) = \Delta H_f \text{ (NH}_4\text{Cl(s))} = -314.4 \, \text{kJ/mol} \][/tex]
- For the reactants \(NH_3(g)\) and \(HCl(g)\):
[tex]\[ \sum \Delta H_f(\text{reactants}) = \Delta H_f \text{ (NH}_3\text{(g))} + \Delta H_f \text{ (HCl(g))} = -46.19 \, \text{kJ/mol} + -92.30 \, \text{kJ/mol} = -138.49 \, \text{kJ/mol} \][/tex]
Now, apply the reaction enthalpy formula:
[tex]\[ \Delta H_{rxn} = (-314.4 \, \text{kJ/mol}) - (-138.49 \, \text{kJ/mol}) \][/tex]
Simplify the expression:
[tex]\[ \Delta H_{rxn} = -314.4 \, \text{kJ/mol} + 138.49 \, \text{kJ/mol} = -175.90999999999997 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy change for the reaction, \(\Delta H_{rxn}\), is:
[tex]\[ \boxed{-175.91 \, \text{kJ}} \][/tex]
[tex]\[ \Delta H_{rxn} = \sum \Delta H_f(\text{products}) - \sum \Delta H_f(\text{reactants}) \][/tex]
Given:
- \(\Delta H_f \text{ (NH}_3\text{(g))} = -46.19 \, \text{kJ/mol}\)
- \(\Delta H_f \text{ (HCl(g))} = -92.30 \, \text{kJ/mol}\)
- \(\Delta H_f \text{ (NH}_4\text{Cl(s))} = -314.4 \, \text{kJ/mol}\)
In the given reaction:
[tex]\[ NH_3(g) + HCl(g) \rightarrow NH_4Cl(s) \][/tex]
First, identify the products and reactants:
- Reactants: \(NH_3(g)\) and \(HCl(g)\)
- Product: \(NH_4Cl(s)\)
Next, sum the enthalpies of formation for the products and reactants:
- For the product \(NH_4Cl(s)\):
[tex]\[ \sum \Delta H_f(\text{products}) = \Delta H_f \text{ (NH}_4\text{Cl(s))} = -314.4 \, \text{kJ/mol} \][/tex]
- For the reactants \(NH_3(g)\) and \(HCl(g)\):
[tex]\[ \sum \Delta H_f(\text{reactants}) = \Delta H_f \text{ (NH}_3\text{(g))} + \Delta H_f \text{ (HCl(g))} = -46.19 \, \text{kJ/mol} + -92.30 \, \text{kJ/mol} = -138.49 \, \text{kJ/mol} \][/tex]
Now, apply the reaction enthalpy formula:
[tex]\[ \Delta H_{rxn} = (-314.4 \, \text{kJ/mol}) - (-138.49 \, \text{kJ/mol}) \][/tex]
Simplify the expression:
[tex]\[ \Delta H_{rxn} = -314.4 \, \text{kJ/mol} + 138.49 \, \text{kJ/mol} = -175.90999999999997 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy change for the reaction, \(\Delta H_{rxn}\), is:
[tex]\[ \boxed{-175.91 \, \text{kJ}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.