Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the type of each sequence, we need to analyze them one by one. We'll identify if each sequence is arithmetic, geometric, or neither.
1. First sequence: \( 3, 5, 7, 9, 11, \ldots \)
To check if this sequence is arithmetic, we need to see if there is a common difference between consecutive terms:
- \( 5 - 3 = 2 \)
- \( 7 - 5 = 2 \)
- \( 9 - 7 = 2 \)
- \( 11 - 9 = 2 \)
Since the difference is constant, this sequence is an arithmetic sequence.
2. Second sequence: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}, \ldots \)
To check if this sequence is geometric, we need to see if there is a common ratio between consecutive terms:
- \( \frac{\frac{1}{9}}{\frac{1}{3}} = \frac{1}{9} \times \frac{3}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{27}}{\frac{1}{9}} = \frac{1}{27} \times \frac{9}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{81}}{\frac{1}{27}} = \frac{1}{81} \times \frac{27}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{243}}{\frac{1}{81}} = \frac{1}{243} \times \frac{81}{1} = \frac{1}{3} \)
Since the ratio is constant, this sequence is a geometric sequence.
3. Third sequence: \( 4, 20, 100, 500, 2500, \ldots \)
Let's check for a common ratio:
- \( \frac{20}{4} = 5 \)
- \( \frac{100}{20} = 5 \)
- \( \frac{500}{100} = 5 \)
- \( \frac{2500}{500} = 5 \)
Since the ratio is constant, this sequence is a geometric sequence.
4. Fourth sequence: \( \frac{25}{4}, \frac{5}{2}, 1, \frac{2}{5}, \frac{4}{25}, \ldots \)
Checking for common ratios:
- \( \frac{\frac{5}{2}}{\frac{25}{4}} = \frac{5}{2} \times \frac{4}{25} = \frac{20}{50} = \frac{2}{5} \)
- \( \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \)
- \( \frac{\frac{2}{5}}{1} = \frac{2}{5} \)
- \( \frac{\frac{4}{25}}{\frac{2}{5}} = \frac{4}{25} \times \frac{5}{2} = \frac{20}{50} = \frac{2}{5} \)
Since the ratio is not constant when checking further, this sequence is neither arithmetic nor geometric.
5. Fifth sequence: \( 5, -13, -29, -40, -59, \ldots \)
To check if this sequence is arithmetic:
- \( -13 - 5 = -18 \)
- \( -29 - (-13) = -29 + 13 = -16 \)
- \( -40 - (-29) = -40 + 29 = -11 \)
Since the difference is not constant, the sequence is not arithmetic.
Based on this analysis, the sequence types are:
1. Arithmetic (A)
2. Geometric (G)
3. Geometric (G)
4. Neither (N)
5. Arithmetic (A)
The correct string of letters describing each sequence is AGGNA.
1. First sequence: \( 3, 5, 7, 9, 11, \ldots \)
To check if this sequence is arithmetic, we need to see if there is a common difference between consecutive terms:
- \( 5 - 3 = 2 \)
- \( 7 - 5 = 2 \)
- \( 9 - 7 = 2 \)
- \( 11 - 9 = 2 \)
Since the difference is constant, this sequence is an arithmetic sequence.
2. Second sequence: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}, \ldots \)
To check if this sequence is geometric, we need to see if there is a common ratio between consecutive terms:
- \( \frac{\frac{1}{9}}{\frac{1}{3}} = \frac{1}{9} \times \frac{3}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{27}}{\frac{1}{9}} = \frac{1}{27} \times \frac{9}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{81}}{\frac{1}{27}} = \frac{1}{81} \times \frac{27}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{243}}{\frac{1}{81}} = \frac{1}{243} \times \frac{81}{1} = \frac{1}{3} \)
Since the ratio is constant, this sequence is a geometric sequence.
3. Third sequence: \( 4, 20, 100, 500, 2500, \ldots \)
Let's check for a common ratio:
- \( \frac{20}{4} = 5 \)
- \( \frac{100}{20} = 5 \)
- \( \frac{500}{100} = 5 \)
- \( \frac{2500}{500} = 5 \)
Since the ratio is constant, this sequence is a geometric sequence.
4. Fourth sequence: \( \frac{25}{4}, \frac{5}{2}, 1, \frac{2}{5}, \frac{4}{25}, \ldots \)
Checking for common ratios:
- \( \frac{\frac{5}{2}}{\frac{25}{4}} = \frac{5}{2} \times \frac{4}{25} = \frac{20}{50} = \frac{2}{5} \)
- \( \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \)
- \( \frac{\frac{2}{5}}{1} = \frac{2}{5} \)
- \( \frac{\frac{4}{25}}{\frac{2}{5}} = \frac{4}{25} \times \frac{5}{2} = \frac{20}{50} = \frac{2}{5} \)
Since the ratio is not constant when checking further, this sequence is neither arithmetic nor geometric.
5. Fifth sequence: \( 5, -13, -29, -40, -59, \ldots \)
To check if this sequence is arithmetic:
- \( -13 - 5 = -18 \)
- \( -29 - (-13) = -29 + 13 = -16 \)
- \( -40 - (-29) = -40 + 29 = -11 \)
Since the difference is not constant, the sequence is not arithmetic.
Based on this analysis, the sequence types are:
1. Arithmetic (A)
2. Geometric (G)
3. Geometric (G)
4. Neither (N)
5. Arithmetic (A)
The correct string of letters describing each sequence is AGGNA.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.