At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the type of each sequence, we need to analyze them one by one. We'll identify if each sequence is arithmetic, geometric, or neither.
1. First sequence: \( 3, 5, 7, 9, 11, \ldots \)
To check if this sequence is arithmetic, we need to see if there is a common difference between consecutive terms:
- \( 5 - 3 = 2 \)
- \( 7 - 5 = 2 \)
- \( 9 - 7 = 2 \)
- \( 11 - 9 = 2 \)
Since the difference is constant, this sequence is an arithmetic sequence.
2. Second sequence: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}, \ldots \)
To check if this sequence is geometric, we need to see if there is a common ratio between consecutive terms:
- \( \frac{\frac{1}{9}}{\frac{1}{3}} = \frac{1}{9} \times \frac{3}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{27}}{\frac{1}{9}} = \frac{1}{27} \times \frac{9}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{81}}{\frac{1}{27}} = \frac{1}{81} \times \frac{27}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{243}}{\frac{1}{81}} = \frac{1}{243} \times \frac{81}{1} = \frac{1}{3} \)
Since the ratio is constant, this sequence is a geometric sequence.
3. Third sequence: \( 4, 20, 100, 500, 2500, \ldots \)
Let's check for a common ratio:
- \( \frac{20}{4} = 5 \)
- \( \frac{100}{20} = 5 \)
- \( \frac{500}{100} = 5 \)
- \( \frac{2500}{500} = 5 \)
Since the ratio is constant, this sequence is a geometric sequence.
4. Fourth sequence: \( \frac{25}{4}, \frac{5}{2}, 1, \frac{2}{5}, \frac{4}{25}, \ldots \)
Checking for common ratios:
- \( \frac{\frac{5}{2}}{\frac{25}{4}} = \frac{5}{2} \times \frac{4}{25} = \frac{20}{50} = \frac{2}{5} \)
- \( \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \)
- \( \frac{\frac{2}{5}}{1} = \frac{2}{5} \)
- \( \frac{\frac{4}{25}}{\frac{2}{5}} = \frac{4}{25} \times \frac{5}{2} = \frac{20}{50} = \frac{2}{5} \)
Since the ratio is not constant when checking further, this sequence is neither arithmetic nor geometric.
5. Fifth sequence: \( 5, -13, -29, -40, -59, \ldots \)
To check if this sequence is arithmetic:
- \( -13 - 5 = -18 \)
- \( -29 - (-13) = -29 + 13 = -16 \)
- \( -40 - (-29) = -40 + 29 = -11 \)
Since the difference is not constant, the sequence is not arithmetic.
Based on this analysis, the sequence types are:
1. Arithmetic (A)
2. Geometric (G)
3. Geometric (G)
4. Neither (N)
5. Arithmetic (A)
The correct string of letters describing each sequence is AGGNA.
1. First sequence: \( 3, 5, 7, 9, 11, \ldots \)
To check if this sequence is arithmetic, we need to see if there is a common difference between consecutive terms:
- \( 5 - 3 = 2 \)
- \( 7 - 5 = 2 \)
- \( 9 - 7 = 2 \)
- \( 11 - 9 = 2 \)
Since the difference is constant, this sequence is an arithmetic sequence.
2. Second sequence: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}, \ldots \)
To check if this sequence is geometric, we need to see if there is a common ratio between consecutive terms:
- \( \frac{\frac{1}{9}}{\frac{1}{3}} = \frac{1}{9} \times \frac{3}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{27}}{\frac{1}{9}} = \frac{1}{27} \times \frac{9}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{81}}{\frac{1}{27}} = \frac{1}{81} \times \frac{27}{1} = \frac{1}{3} \)
- \( \frac{\frac{1}{243}}{\frac{1}{81}} = \frac{1}{243} \times \frac{81}{1} = \frac{1}{3} \)
Since the ratio is constant, this sequence is a geometric sequence.
3. Third sequence: \( 4, 20, 100, 500, 2500, \ldots \)
Let's check for a common ratio:
- \( \frac{20}{4} = 5 \)
- \( \frac{100}{20} = 5 \)
- \( \frac{500}{100} = 5 \)
- \( \frac{2500}{500} = 5 \)
Since the ratio is constant, this sequence is a geometric sequence.
4. Fourth sequence: \( \frac{25}{4}, \frac{5}{2}, 1, \frac{2}{5}, \frac{4}{25}, \ldots \)
Checking for common ratios:
- \( \frac{\frac{5}{2}}{\frac{25}{4}} = \frac{5}{2} \times \frac{4}{25} = \frac{20}{50} = \frac{2}{5} \)
- \( \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \)
- \( \frac{\frac{2}{5}}{1} = \frac{2}{5} \)
- \( \frac{\frac{4}{25}}{\frac{2}{5}} = \frac{4}{25} \times \frac{5}{2} = \frac{20}{50} = \frac{2}{5} \)
Since the ratio is not constant when checking further, this sequence is neither arithmetic nor geometric.
5. Fifth sequence: \( 5, -13, -29, -40, -59, \ldots \)
To check if this sequence is arithmetic:
- \( -13 - 5 = -18 \)
- \( -29 - (-13) = -29 + 13 = -16 \)
- \( -40 - (-29) = -40 + 29 = -11 \)
Since the difference is not constant, the sequence is not arithmetic.
Based on this analysis, the sequence types are:
1. Arithmetic (A)
2. Geometric (G)
3. Geometric (G)
4. Neither (N)
5. Arithmetic (A)
The correct string of letters describing each sequence is AGGNA.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.