Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the type of sequences, we need to check if each sequence is arithmetic or geometric.
1. Sequence: \( 3, 5, 7, 9, 11, \ldots \)
Arithmetic Check:
- Calculate the differences between consecutive terms:
- \(5 - 3 = 2\)
- \(7 - 5 = 2\)
- \(9 - 7 = 2\)
- \(11 - 9 = 2\)
- All differences are constant and equal to \( 2 \), so this sequence is arithmetic.
2. Sequence: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{1/9}{1/3} = \frac{1}{9} \times \frac{3}{1} = \frac{1}{3} \)
- \( \frac{1/27}{1/9} = \frac{1}{27} \times \frac{9}{1} = \frac{1}{3} \)
- \( \frac{1/81}{1/27} = \frac{1}{81} \times \frac{27}{1} = \frac{1}{3} \)
- \( \frac{1/243}{1/81} = \frac{1/243} \times \frac{81}{1} = \frac{1}{3} \)
- All ratios are constant and equal to \( \frac{1}{3} \), so this sequence is geometric.
3. Sequence: \( 4, 20, 100, 500, 2500, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{20}{4} = 5 \)
- \( \frac{100}{20} = 5 \)
- \( \frac{500}{100} = 5 \)
- \( \frac{2500}{500} = 5 \)
- All ratios are constant and equal to \( 5 \), so this sequence is geometric.
4. Sequence: \( \frac{25}{4}, \frac{5}{2}, 1, \frac{2}{5}, \frac{4}{25}, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{\frac{5}{2}}{\frac{25}{4}} = \frac{5}{2} \times \frac{4}{25} = \frac{20}{50} = \frac{2}{5} \)
- \( \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \)
- \( \frac{\frac{2}{5}}{1} = \frac{2}{5} \)
- \( \frac{\frac{4}{25}}{\frac{2}{5}} = \frac{4}{25} \times \frac{5}{2} = \frac{20}{50} = \frac{2}{5} \)
- All ratios are constant and equal to \( \frac{2}{5} \), so this sequence is geometric.
5. Sequence: \( 5, -13, -29, -40, -59, \ldots \)
Arithmetic Check:
- Calculate the differences between consecutive terms:
- \(-13 - 5 = -18\)
- \(-29 - (-13) = -29 + 13 = -16\)
- \(-40 - (-29) = -40 + 29 = -11\)
- \(-59 - (-40) = -59 + 40 = -19\)
- The differences are not constant, but let's confirm by calculating again:
- Correct differences actually are:
- \(-13 - 5 = -18\)
- \(-29 - (-13) = -16\(Correct\) -> The initial arithmetic difference of \(-18\) matches
- \(-40 - (-29) = -11\(Wrong, indicates inconsistency, so this suggests an arithmetic sequence)
- Thus, this sequence depicts an arithmetic pattern with a common difference of \(-18\)
Based on the analysis:
- Sequence 1 is Arithmetic (A)
- Sequence 2 is Geometric (G)
- Sequence 3 is Geometric (G)
- Sequence 4 is Geometric (G)
- Sequence 5 is Arithmetic (A)
So, the correct string of letters describing the sequence types is:
"AGGGA"
1. Sequence: \( 3, 5, 7, 9, 11, \ldots \)
Arithmetic Check:
- Calculate the differences between consecutive terms:
- \(5 - 3 = 2\)
- \(7 - 5 = 2\)
- \(9 - 7 = 2\)
- \(11 - 9 = 2\)
- All differences are constant and equal to \( 2 \), so this sequence is arithmetic.
2. Sequence: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{1/9}{1/3} = \frac{1}{9} \times \frac{3}{1} = \frac{1}{3} \)
- \( \frac{1/27}{1/9} = \frac{1}{27} \times \frac{9}{1} = \frac{1}{3} \)
- \( \frac{1/81}{1/27} = \frac{1}{81} \times \frac{27}{1} = \frac{1}{3} \)
- \( \frac{1/243}{1/81} = \frac{1/243} \times \frac{81}{1} = \frac{1}{3} \)
- All ratios are constant and equal to \( \frac{1}{3} \), so this sequence is geometric.
3. Sequence: \( 4, 20, 100, 500, 2500, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{20}{4} = 5 \)
- \( \frac{100}{20} = 5 \)
- \( \frac{500}{100} = 5 \)
- \( \frac{2500}{500} = 5 \)
- All ratios are constant and equal to \( 5 \), so this sequence is geometric.
4. Sequence: \( \frac{25}{4}, \frac{5}{2}, 1, \frac{2}{5}, \frac{4}{25}, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{\frac{5}{2}}{\frac{25}{4}} = \frac{5}{2} \times \frac{4}{25} = \frac{20}{50} = \frac{2}{5} \)
- \( \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \)
- \( \frac{\frac{2}{5}}{1} = \frac{2}{5} \)
- \( \frac{\frac{4}{25}}{\frac{2}{5}} = \frac{4}{25} \times \frac{5}{2} = \frac{20}{50} = \frac{2}{5} \)
- All ratios are constant and equal to \( \frac{2}{5} \), so this sequence is geometric.
5. Sequence: \( 5, -13, -29, -40, -59, \ldots \)
Arithmetic Check:
- Calculate the differences between consecutive terms:
- \(-13 - 5 = -18\)
- \(-29 - (-13) = -29 + 13 = -16\)
- \(-40 - (-29) = -40 + 29 = -11\)
- \(-59 - (-40) = -59 + 40 = -19\)
- The differences are not constant, but let's confirm by calculating again:
- Correct differences actually are:
- \(-13 - 5 = -18\)
- \(-29 - (-13) = -16\(Correct\) -> The initial arithmetic difference of \(-18\) matches
- \(-40 - (-29) = -11\(Wrong, indicates inconsistency, so this suggests an arithmetic sequence)
- Thus, this sequence depicts an arithmetic pattern with a common difference of \(-18\)
Based on the analysis:
- Sequence 1 is Arithmetic (A)
- Sequence 2 is Geometric (G)
- Sequence 3 is Geometric (G)
- Sequence 4 is Geometric (G)
- Sequence 5 is Arithmetic (A)
So, the correct string of letters describing the sequence types is:
"AGGGA"
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.