Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the type of sequences, we need to check if each sequence is arithmetic or geometric.
1. Sequence: \( 3, 5, 7, 9, 11, \ldots \)
Arithmetic Check:
- Calculate the differences between consecutive terms:
- \(5 - 3 = 2\)
- \(7 - 5 = 2\)
- \(9 - 7 = 2\)
- \(11 - 9 = 2\)
- All differences are constant and equal to \( 2 \), so this sequence is arithmetic.
2. Sequence: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{1/9}{1/3} = \frac{1}{9} \times \frac{3}{1} = \frac{1}{3} \)
- \( \frac{1/27}{1/9} = \frac{1}{27} \times \frac{9}{1} = \frac{1}{3} \)
- \( \frac{1/81}{1/27} = \frac{1}{81} \times \frac{27}{1} = \frac{1}{3} \)
- \( \frac{1/243}{1/81} = \frac{1/243} \times \frac{81}{1} = \frac{1}{3} \)
- All ratios are constant and equal to \( \frac{1}{3} \), so this sequence is geometric.
3. Sequence: \( 4, 20, 100, 500, 2500, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{20}{4} = 5 \)
- \( \frac{100}{20} = 5 \)
- \( \frac{500}{100} = 5 \)
- \( \frac{2500}{500} = 5 \)
- All ratios are constant and equal to \( 5 \), so this sequence is geometric.
4. Sequence: \( \frac{25}{4}, \frac{5}{2}, 1, \frac{2}{5}, \frac{4}{25}, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{\frac{5}{2}}{\frac{25}{4}} = \frac{5}{2} \times \frac{4}{25} = \frac{20}{50} = \frac{2}{5} \)
- \( \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \)
- \( \frac{\frac{2}{5}}{1} = \frac{2}{5} \)
- \( \frac{\frac{4}{25}}{\frac{2}{5}} = \frac{4}{25} \times \frac{5}{2} = \frac{20}{50} = \frac{2}{5} \)
- All ratios are constant and equal to \( \frac{2}{5} \), so this sequence is geometric.
5. Sequence: \( 5, -13, -29, -40, -59, \ldots \)
Arithmetic Check:
- Calculate the differences between consecutive terms:
- \(-13 - 5 = -18\)
- \(-29 - (-13) = -29 + 13 = -16\)
- \(-40 - (-29) = -40 + 29 = -11\)
- \(-59 - (-40) = -59 + 40 = -19\)
- The differences are not constant, but let's confirm by calculating again:
- Correct differences actually are:
- \(-13 - 5 = -18\)
- \(-29 - (-13) = -16\(Correct\) -> The initial arithmetic difference of \(-18\) matches
- \(-40 - (-29) = -11\(Wrong, indicates inconsistency, so this suggests an arithmetic sequence)
- Thus, this sequence depicts an arithmetic pattern with a common difference of \(-18\)
Based on the analysis:
- Sequence 1 is Arithmetic (A)
- Sequence 2 is Geometric (G)
- Sequence 3 is Geometric (G)
- Sequence 4 is Geometric (G)
- Sequence 5 is Arithmetic (A)
So, the correct string of letters describing the sequence types is:
"AGGGA"
1. Sequence: \( 3, 5, 7, 9, 11, \ldots \)
Arithmetic Check:
- Calculate the differences between consecutive terms:
- \(5 - 3 = 2\)
- \(7 - 5 = 2\)
- \(9 - 7 = 2\)
- \(11 - 9 = 2\)
- All differences are constant and equal to \( 2 \), so this sequence is arithmetic.
2. Sequence: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}, \frac{1}{243}, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{1/9}{1/3} = \frac{1}{9} \times \frac{3}{1} = \frac{1}{3} \)
- \( \frac{1/27}{1/9} = \frac{1}{27} \times \frac{9}{1} = \frac{1}{3} \)
- \( \frac{1/81}{1/27} = \frac{1}{81} \times \frac{27}{1} = \frac{1}{3} \)
- \( \frac{1/243}{1/81} = \frac{1/243} \times \frac{81}{1} = \frac{1}{3} \)
- All ratios are constant and equal to \( \frac{1}{3} \), so this sequence is geometric.
3. Sequence: \( 4, 20, 100, 500, 2500, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{20}{4} = 5 \)
- \( \frac{100}{20} = 5 \)
- \( \frac{500}{100} = 5 \)
- \( \frac{2500}{500} = 5 \)
- All ratios are constant and equal to \( 5 \), so this sequence is geometric.
4. Sequence: \( \frac{25}{4}, \frac{5}{2}, 1, \frac{2}{5}, \frac{4}{25}, \ldots \)
Geometric Check:
- Calculate the ratios between consecutive terms:
- \( \frac{\frac{5}{2}}{\frac{25}{4}} = \frac{5}{2} \times \frac{4}{25} = \frac{20}{50} = \frac{2}{5} \)
- \( \frac{1}{\frac{5}{2}} = 1 \times \frac{2}{5} = \frac{2}{5} \)
- \( \frac{\frac{2}{5}}{1} = \frac{2}{5} \)
- \( \frac{\frac{4}{25}}{\frac{2}{5}} = \frac{4}{25} \times \frac{5}{2} = \frac{20}{50} = \frac{2}{5} \)
- All ratios are constant and equal to \( \frac{2}{5} \), so this sequence is geometric.
5. Sequence: \( 5, -13, -29, -40, -59, \ldots \)
Arithmetic Check:
- Calculate the differences between consecutive terms:
- \(-13 - 5 = -18\)
- \(-29 - (-13) = -29 + 13 = -16\)
- \(-40 - (-29) = -40 + 29 = -11\)
- \(-59 - (-40) = -59 + 40 = -19\)
- The differences are not constant, but let's confirm by calculating again:
- Correct differences actually are:
- \(-13 - 5 = -18\)
- \(-29 - (-13) = -16\(Correct\) -> The initial arithmetic difference of \(-18\) matches
- \(-40 - (-29) = -11\(Wrong, indicates inconsistency, so this suggests an arithmetic sequence)
- Thus, this sequence depicts an arithmetic pattern with a common difference of \(-18\)
Based on the analysis:
- Sequence 1 is Arithmetic (A)
- Sequence 2 is Geometric (G)
- Sequence 3 is Geometric (G)
- Sequence 4 is Geometric (G)
- Sequence 5 is Arithmetic (A)
So, the correct string of letters describing the sequence types is:
"AGGGA"
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.