Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze Jessica's situation in the dice game "Sums" to determine whether she should choose to play odds or evens.
We are given the probabilities associated with each of the possible sums from rolling two dice, as shown in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Roll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline P(\text{Roll}) & \frac{1}{36} & \frac{2}{36} & \frac{3}{36} & \frac{4}{36} & \frac{5}{36} & \frac{6}{36} & \frac{5}{36} & \frac{4}{36} & \frac{3}{36} & \frac{2}{36} & \frac{1}{36} \\ \hline \end{array} \][/tex]
We will calculate the expected value of points for both the even and odd sums.
### Even Sums and Their Probabilities
The even sums are [tex]$2, 4, 6, 8, 10, 12$[/tex]. From the table, we extract their probabilities:
[tex]\[ \begin{aligned} P(2) &= \frac{1}{36},\\ P(4) &= \frac{3}{36},\\ P(6) &= \frac{5}{36},\\ P(8) &= \frac{5}{36},\\ P(10) &= \frac{3}{36},\\ P(12) &= \frac{1}{36}. \end{aligned} \][/tex]
Next, we calculate the expected value of points for even sums, \(E(\text{evens})\):
[tex]\[ E(\text{evens}) = 2 \cdot \frac{1}{36} + 4 \cdot \frac{3}{36} + 6 \cdot \frac{5}{36} + 8 \cdot \frac{5}{36} + 10 \cdot \frac{3}{36} + 12 \cdot \frac{1}{36} \][/tex]
[tex]\[ E(\text{evens}) = \frac{2}{36} + \frac{12}{36} + \frac{30}{36} + \frac{40}{36} + \frac{30}{36} + \frac{12}{36} = \frac{126}{36} = 3.5 \][/tex]
### Odd Sums and Their Probabilities
The odd sums are [tex]$3, 5, 7, 9, 11$[/tex]. From the table, we extract their probabilities:
[tex]\[ \begin{aligned} P(3) &= \frac{2}{36},\\ P(5) &= \frac{4}{36},\\ P(7) &= \frac{6}{36},\\ P(9) &= \frac{4}{36},\\ P(11) &= \frac{2}{36}. \end{aligned} \][/tex]
Next, we calculate the expected value of points for odd sums, \(E(\text{odds})\):
[tex]\[ E(\text{odds}) = 3 \cdot \frac{2}{36} + 5 \cdot \frac{4}{36} + 7 \cdot \frac{6}{36} + 9 \cdot \frac{4}{36} + 11 \cdot \frac{2}{36} \][/tex]
[tex]\[ E(\text{odds}) = \frac{6}{36} + \frac{20}{36} + \frac{42}{36} + \frac{36}{36} + \frac{22}{36} = \frac{126}{36} = 3.5 \][/tex]
### Conclusion
The expected value of points for both even and odd sums is the same, \(3.5\).
So, the accurate statement in guiding Jessica is:
Both evens and odds have the same expected value of points, [tex]\(3.5\)[/tex]. Therefore, it makes no statistical difference whether Jessica chooses to play evens or odds, as her expected score will be the same in either case.
We are given the probabilities associated with each of the possible sums from rolling two dice, as shown in the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{Roll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline P(\text{Roll}) & \frac{1}{36} & \frac{2}{36} & \frac{3}{36} & \frac{4}{36} & \frac{5}{36} & \frac{6}{36} & \frac{5}{36} & \frac{4}{36} & \frac{3}{36} & \frac{2}{36} & \frac{1}{36} \\ \hline \end{array} \][/tex]
We will calculate the expected value of points for both the even and odd sums.
### Even Sums and Their Probabilities
The even sums are [tex]$2, 4, 6, 8, 10, 12$[/tex]. From the table, we extract their probabilities:
[tex]\[ \begin{aligned} P(2) &= \frac{1}{36},\\ P(4) &= \frac{3}{36},\\ P(6) &= \frac{5}{36},\\ P(8) &= \frac{5}{36},\\ P(10) &= \frac{3}{36},\\ P(12) &= \frac{1}{36}. \end{aligned} \][/tex]
Next, we calculate the expected value of points for even sums, \(E(\text{evens})\):
[tex]\[ E(\text{evens}) = 2 \cdot \frac{1}{36} + 4 \cdot \frac{3}{36} + 6 \cdot \frac{5}{36} + 8 \cdot \frac{5}{36} + 10 \cdot \frac{3}{36} + 12 \cdot \frac{1}{36} \][/tex]
[tex]\[ E(\text{evens}) = \frac{2}{36} + \frac{12}{36} + \frac{30}{36} + \frac{40}{36} + \frac{30}{36} + \frac{12}{36} = \frac{126}{36} = 3.5 \][/tex]
### Odd Sums and Their Probabilities
The odd sums are [tex]$3, 5, 7, 9, 11$[/tex]. From the table, we extract their probabilities:
[tex]\[ \begin{aligned} P(3) &= \frac{2}{36},\\ P(5) &= \frac{4}{36},\\ P(7) &= \frac{6}{36},\\ P(9) &= \frac{4}{36},\\ P(11) &= \frac{2}{36}. \end{aligned} \][/tex]
Next, we calculate the expected value of points for odd sums, \(E(\text{odds})\):
[tex]\[ E(\text{odds}) = 3 \cdot \frac{2}{36} + 5 \cdot \frac{4}{36} + 7 \cdot \frac{6}{36} + 9 \cdot \frac{4}{36} + 11 \cdot \frac{2}{36} \][/tex]
[tex]\[ E(\text{odds}) = \frac{6}{36} + \frac{20}{36} + \frac{42}{36} + \frac{36}{36} + \frac{22}{36} = \frac{126}{36} = 3.5 \][/tex]
### Conclusion
The expected value of points for both even and odd sums is the same, \(3.5\).
So, the accurate statement in guiding Jessica is:
Both evens and odds have the same expected value of points, [tex]\(3.5\)[/tex]. Therefore, it makes no statistical difference whether Jessica chooses to play evens or odds, as her expected score will be the same in either case.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.