Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the time it takes for the ball to hit the floor, we need to find the value of \( t \) when the height \( H(t) \) equals zero. The height can be modeled by the quadratic equation:
[tex]\[ H(t) = -16t^2 + 15t + 4 \][/tex]
We set \( H(t) = 0 \):
[tex]\[ -16t^2 + 15t + 4 = 0 \][/tex]
This is a quadratic equation of the form \( at^2 + bt + c = 0 \), where:
- \( a = -16 \)
- \( b = 15 \)
- \( c = 4 \)
To solve for \( t \), we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, we compute the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substitute \( a = -16 \), \( b = 15 \), and \( c = 4 \) into the discriminant formula:
[tex]\[ \text{Discriminant} = 15^2 - 4(-16)(4) \][/tex]
[tex]\[ \text{Discriminant} = 225 + 256 \][/tex]
[tex]\[ \text{Sciminant} = 481 \][/tex]
Next, we substitute the values of \( a \), \( b \), and the discriminant back into the quadratic formula:
[tex]\[ t = \frac{-15 \pm \sqrt{481}}{2(-16)} \][/tex]
Calculating both potential solutions:
[tex]\[ t_1 = \frac{-15 + \sqrt{481}}{-32} \][/tex]
[tex]\[ t_2 = \frac{-15 - \sqrt{481}}{-32} \][/tex]
These yield the approximate solutions:
[tex]\[ t_1 \approx -0.217 \][/tex]
[tex]\[ t_2 \approx 1.154 \][/tex]
Given that time cannot be negative, we discard the negative solution. Therefore, the time it takes for the ball to hit the floor is approximately:
[tex]\[ t \approx 1.154 \][/tex]
So the closest answer to the options provided is:
1.15 seconds
[tex]\[ H(t) = -16t^2 + 15t + 4 \][/tex]
We set \( H(t) = 0 \):
[tex]\[ -16t^2 + 15t + 4 = 0 \][/tex]
This is a quadratic equation of the form \( at^2 + bt + c = 0 \), where:
- \( a = -16 \)
- \( b = 15 \)
- \( c = 4 \)
To solve for \( t \), we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, we compute the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substitute \( a = -16 \), \( b = 15 \), and \( c = 4 \) into the discriminant formula:
[tex]\[ \text{Discriminant} = 15^2 - 4(-16)(4) \][/tex]
[tex]\[ \text{Discriminant} = 225 + 256 \][/tex]
[tex]\[ \text{Sciminant} = 481 \][/tex]
Next, we substitute the values of \( a \), \( b \), and the discriminant back into the quadratic formula:
[tex]\[ t = \frac{-15 \pm \sqrt{481}}{2(-16)} \][/tex]
Calculating both potential solutions:
[tex]\[ t_1 = \frac{-15 + \sqrt{481}}{-32} \][/tex]
[tex]\[ t_2 = \frac{-15 - \sqrt{481}}{-32} \][/tex]
These yield the approximate solutions:
[tex]\[ t_1 \approx -0.217 \][/tex]
[tex]\[ t_2 \approx 1.154 \][/tex]
Given that time cannot be negative, we discard the negative solution. Therefore, the time it takes for the ball to hit the floor is approximately:
[tex]\[ t \approx 1.154 \][/tex]
So the closest answer to the options provided is:
1.15 seconds
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.